Monografia

Micro turbo expander design for small scale ORC

Tesla turbine
  • Lorenzo Talluri,

The Tesla expander was first developed by N. Tesla at the beginning of the 20th century. In recent years, due to the increasing appeal towards micro power generation and energy recovery from wasted flows, this cost effective expander technology rose a renovated interest. In the present study, a 2D numerical model is realized and a design procedure of a Tesla turbine for ORC applications is proposed. A throughout optimization method is developed by evaluating the losses of each component. The 2D model results are further exploited through the development of 3D computational investigation, which allows an accurate comprehension of the flow characteristics. Finally, two prototypes are designed, realized and tested. The former one is designed to work with air as working fluid. The second prototype is designed to work with organic fluids. The achieved experimental results confirmed the validity and the large potential applicative chances of this emerging technology in the field of micro sizes, low inlet temperature and low expansion ratios.

  • Parole chiave:
  • Tesla turbine,
  • fluid dynamics,
  • ORC,
  • micro expanders,
  • experimental campaign,
+ Show more
Acquisto

Lorenzo Talluri

University of Florence, Italy - ORCID: 0000-0001-5342-2512

Lorenzo Talluri is a post-doctoral researcher at the Department of Industrial Engineering of University of Florence. He’s also adjunct professor of the course Energy, sustainability and the environment for the academic year 2019/2020 at University of Florence. His main research topics involve sustainable energy conversion systems with low environmental impact (low CO2 emissions, binary cycles), renewables, and design of small and micro expanders for ORC.
  1. Adams R., Rice W., “Experimental investigation of the flow between corotating disks”, in: Transactions of the ASME, Journal of Applied Mechanics, 844–849, 1970.
  2. Aljundi I.H., “Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle”, in: Renewable Energy, 36, 1196–1202, 2011.
  3. Allen J.S., A model for fluid between parallel, co–rotating annular disks, M.Sc. Thesis, University of Dayton, Ohio, 1990.
  4. Alrabie M.S., Altamimi F.N., Atlarrgemy M.H., Hadi F., Akbar M.K., Traum M.J., “Method to design a hydro tesla turbine for sensitivity to varying laminar Reynolds number modulated by changing working fluid viscosity”, in: Proceedings of the ASME Power and Energy Conference, Charlotte, 2017.
  5. Al–Sulaiman F.A., Dincer I., Hamdullahpur F., “Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production”, in: J. Power Sources, 195, 2346–2354, 2010.
  6. Anderson J.D., Fundamentals of aerodynamics, 3rd ed., McGraw Hill, NewYork, 2001.
  7. Armstrong J.H., An Investigation of the Performance of a Modified Tesla Turbine, M.Sc. Thesis, Georgia Institute of Technology, 1952.
  8. Astolfi M., Alfani D., Lasala S., Macchi E., “Comparison between ORC and CO2 power systems for the exploitation of low–medium temperature heat sources”, in: Energy, 161, 1250–1261, 2018.
  9. Baginski P., Jedrzejewski L., “The strength and dynamic analysis of the prototype of the Tesla turbine”, in: Diagnostyka, 16, 17–24, 2015.
  10. Balje O.E., Turbomachines, a guide to design, selection and theory, John Wiley and sons, New York, 1981.
  11. Bankar N., Chavan A., Dhole S., Patunkar P., “Development of hybrid Tesla turbine and current trends in application of Tesla turbine”, in: International Journal for Technological Research in Engineering, 3, 1504–1507, 2016.
  12. Bao G., Shi Y., Cai N., “Numerical modelling research on the boundary layer turbine using organic working fluid”, in: Proceeding of International Conference on Power Engineering (ICOPE–13), Wuhan, China, 2013.
  13. Bao J., Zhao L., “A review of working fluid and expander selections for Organic Rankine Cycle”, in: Renewable and Sustainable Energy Reviews, 24, 325–342, 2013.
  14. Bassett C.E., “An integral solution for compressible flow through disc turbines”, in: Proceedings of the 10th Intersociety Energy Conversion Engineering Conference, Newark, Delaware, 1975.
  15. Batista M., “A note on steady flow of incompressible fluid between two co–rotating disks”, in: Physics, Cornell University Library, 2007.
  16. Batista M., “Steady flow of incompressible fluid between two co–rotating disks”, in: Appl. Mathematical Modelling, 35, 5225–5233, 2011.
  17. Beans E.W., “Investigation into the performance characteristics of a friction turbine”, in: J. Spacecraft, 3, 131–134, 1966.
  18. Beans E.W., Performance characteristics of a Friction Disc Turbine, Ph.D. Thesis, Pennsylvania State University, 1961.
  19. Bhandari V.B., Machine Design Data Book, 2nd ed., McGraw Hill, New Delhi, 2014.
  20. Bloudicek P., Palousek D., “Design of Tesla turbine”, in: Proceedings of Konference diplomovych praci, Brno, 2007.
  21. Bombarda P., Invernizzi C, Gaia M., “Performance analysis of OTEC plants with multilevel Organic Rankine Cycle and solar hybridization”, in: ASME J. Eng. Gas Turbines Power, 135, 2013.
  22. Bonilla J.J., Blanco J.M., Lopez L., Sala J.M., “Technological recovery potential of waste heat in the industry of the Basque country”, in: Appl. Therm. Eng., 17, 283–288, 1997.
  23. Borate H.P., Misal N.D., “An effect of surface finish and spacing between discs on the performance of disc turbine”, in: International Journal of Applied Research in Mechanical Engineering, 2, 25–30, 2012.
  24. Boyak B.E., Rice W., “Integral method for flow between corotating disks”, in: ASME Journal of Basic Engineering, 93, 350–354, 1971.
  25. Boyd K.E., Rice W., “Laminar inward flow of an incompressible fluid between rotating disks, with full peripheral admission”, in: Journal of Applied Mechanics, 229–237, 1968.
  26. Braimakis K., Karellas S., “Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities”, in: Energy, 121, 570–598, 2017.
  27. Branchini L., De Pascale A., Peretto A., “Systematic comparison of ORC configurations by means of comprehensive performance indexes”, in: Appl. Therm. Eng., 61, 129–140, 2013.
  28. Bronicki L.Y., History of Organic Rankine Cycle systmes, in: Macchi M. and Astolfi M., Organic Rankine Cycle (ORC) Power Systems, Technologies and Applications, 1st Edition, Woodhead Publishing, Elsevier.
  29. Butenko V.A., Rylov Y.P., Chikov V.P., “Experimental investigation of the characteristics of small–sized nozzles”, in: Fluid Dyn, 11, 936–939, 1976.
  30. Carey V.P., “Assessment of Tesla Turbine Performance for Small Scale Rankine Combined Heat and Power Systems”, in: J. Eng. Gas Turbines Power, 132, 1–8; 2010.
  31. Carey V.P., “Computational/Theoretical Modelling of Flow Physics and Transport in Disk Rotor Drag Turbine Expanders for Green Energy Conversion Technologies”, in: Proc. of the ASME 2010 International Mechanical Engineering Congress & Exposition, Vancouver, Canada; 2010.
  32. Cengel Y., Heat and mass transfer, 3rd ed., McGraw Hill, NewYork, 2006.
  33. Chacartegui R., Sánchez D., Muñoz J.M., Sánchez T., “Alternative ORC bottoming cycles for combined cycle power plants”, in: Appl. Energy, 86, 2162–2170, 2009.
  34. Chen J., Huang Y., Niu Z., Chen Y., Luo X., “Performance analysis of a novel organic Rankine cycle with a vapor–liquid ejector”, in: Energy Conversion and Management, 157, 382–395, 2018.
  35. Choon T.W., Rahman A.A., Jer F.S., Aik L.E., “Optimization of Tesla turbine using Computational Fluid Dynamics approach”, in: IEEE Symposium on Industrial Electronics and Applications (ISIEA2011), 2011.
  36. Cirincione N, Design, construction and commissioning of an organic Rankine cycle waste heat recovery system with a Tesla hybrid turbine expander, M.Sc. Thesis, Colorado State University, 2011.
  37. Cohen H., Rogers G.F.C., Saravanamuttoo H.I.H, Gas Turbine Theory, Longman Group Limited, England, 1996.
  38. Colonna P., Casati E., Trapp C., Mathijssen T., Larjola J., Turunen–Saareti T., Uusitalo A., “Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future”, in: J. of Engineering for Gas Turbines and Power, 137, 1–19, 2015.
  39. Couto H.S., Duarte J.B.F., Bastos–Neto D., “The Tesla turbine revisited”, in: 8th Asia–Pacific International symposium on Combustion and Energy Utilization, Sochi, 2006.
  40. Crowell R., “Generation of electricity utilizing solar hot water collectors and a Tesla turbine”, in: Proceedings of the ASME 3rd International Conference of Energy Sustainability, California, 2009.
  41. Damodhar R., Mruthyunjava K.N., Naveen K., Prabhakar P., Rakhesh H.S., “Design and fabrication of portable water turbine”, in: International Research Journal of Engineering and Technology, 4, 2584–2590, 2017.
  42. Deam R.T., Lemma E., Mace B., Collins R., “On scaling down turbines to millimeter size”, in: Transaction of ASME, Journal of Engineering for Gas Turbines and Power, 130, 1–9, 2008.
  43. Deng Q., Qi W., Feng Z., “Improvement of a theoretical analysis method for Tesla turbines”, in: Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, 2013.
  44. Desideri A., Gusev S., Van Den Broek M., Lemort V., Quoilin S., “Experimental comparison of organic fluids for low temperature ORC (organic Rankine cycle) systems for waste heat recovery applications”, in: Energy, 97, 460–469, 2016.
  45. Dixon S.L., Fluid Mechanics and Thermodynamics of Turbomachinery, 5th ed., Pergamon Press, 2005.
  46. Dong L.L., Liu H., Riffat S.B., “Development of small–scale and micro–scale biomass–fuelled CHP systems – a literature review”, in: Appl. Therm. Eng., 29, 2119–2126, 2009.
  47. Dumont O., Parthoens A., Dickes R., Lemort V., “Experimental investigation and optimal performance assessment of four volumetric expanders (scroll, screw, piston and roots) tested in a small–scale organic Rankine cycle system”, in Energy, 165, 1119–1127, 2018.
  48. Dyrobes, Rolling Element Bearings, available at: https://dyrobes.com/help1800/Rotor/html/dyro17qs.htm, last accessed on 2nd July 2018.
  49. Emran T.A., Alexander R.C., Stallings C.R., DeMay M.A., Traum M.J., “Method to accurately estimate Tesla turbine stall torque for dynamometer or generator load selection”, in: ASME Early Career Technical Journal, Atlanta, 2010.
  50. Emran T.A., Tesla turbine torque modelling for construction of a dynamometer and turbine, M.Sc. Thesis, University of North Texas, 2011.
  51. European commission, H2020 Work Programme 2018–2020, Secure, clean and efficient energy, available at: http://ec.europa.eu/research/participants/data/ref/h2020/wp/2018–2020/main/h2020–wp1820–energy_en.pdf, last accessed on 23rd May 2018.
  52. Fiaschi D., Innocenti G., Manfrida G., Maraschiello F., “Design of micro radial turboexpanders for ORC power cycles: From 0D to 3D”, in: Appl. Therm. Eng., 99, 402–410, 2016.
  53. Fiaschi D., Manfrida G., Maraschiello F., “Design and performance prediction of radial ORC turboexpanders”, in: Appl. Energy, 138, 517–532, 2014.
  54. Fiaschi D., Manfrida G., Maraschiello F., “Thermo–fluid dynamics preliminary design of turbo–expanders for ORC cycles”, in: Appl. Energy, 97, 601–608, 2012.
  55. Fiaschi D., Manfrida G., Rogai E., Talluri L., “Exergoeconomic analysis and comparison between ORC and Kalina cycles to exploit low and medium–temperature heat from two geothermal sites”, in: Energy Conversion and Management, 154, 503–516, 2017.
  56. Garg P., Karthik G.M., Kumar P., Kumar P., “Development of a generic tool to design scroll expanders for ORC applications”, in: Appl. Therm. Eng., 109, 878–888, 2016.
  57. Gargiulo E.P., Jr., “A Simple Way to Estimate Bearing Stiffness”, in: Machine Design, 107–110, 1980.
  58. Garrison P.W., Harvey D.W., Catton I., “Laminar compressible flow between rotating disks”, in: Transactions of the ASME, Journal of Fluid Engineering, 382–388, 1976.
  59. Glassman A.J., Computer Program for Design Analysis of Radial–inflow Turbines, National Aeronautics and Space Administration, Technical report, 1976.
  60. Guha A, Sengupta S, “The fluid dynamics of the rotating flow in a Tesla disc turbine”, in: European Journal of Mechanics B/Fluids, 37, 112–123, 2013.
  61. Guha A., Sengupta S., “A non–dimensional study of the flow through co–rotating discs and performance optimization of a Tesla disc turbine”, in: Proc. IMechE Part A: Journal of Power and Energy, 1–18, 2017.
  62. Guha A., Smiley B., “Experiment and analysis for an improved design of the inlet and nozzle in Tesla disc turbines”, in: Proc. IMechE, Part A: J. Power and Energy, 224, 261–277, 2009.
  63. Guha, A., Sengupta S., “Similitude and scaling laws for the rotating flow between concentric discs”, in: Proceedings of the Institution of Mechanical Engineers, Part A, Journal of Power and Energy, 28, 429–439, 2014.
  64. Guha, A., Sengupta S., “The fluid dynamics of work transfer in the non–uniform viscous rotating flow within a Tesla disc turbomachine”, Physics of Fluids, 26, 1–27, 2014.
  65. Guimaraes L.N.F., Marcelino N.B., Placco G.M., Nascimento J.A., Borges E.M., Barrios A.G., “Heat–electricity conversion systems for a Brazilian space micro nuclear reactor”, in: International Nuclear Atlantic Conference, Recife, 2013.
  66. Guimaraes L.N.F., Ribeiro G.B., Braz Filho F.A., Nascimento J.A., Placco G.M., De Faria S.M., “Technology development for nuclear power generation for space application”, in: International Nuclear Atlantic Conference, Sao Paulo, 2015.
  67. Gupta H.E., Kodali S., “Design and Operation of Tesla turbo machine – A state of the art review”, in: International Journal of Advanced Transport Phenomena, 2, 7–14, 2013.
  68. Haiqing G., Yitai M., Minxia L., “Some design features of CO2 swing piston expander”, Appl. Therm. Eng., 26, 237–243, 2006.
  69. Hamrock B.J. Anderson, W.J., “Rolling–element bearings”, in: NASA Reference publication, 1105, 57, 1983.
  70. Hamrock B.J., Anderson, W.J., “Analysis of an arched outer–race ball bearing considering centrifugal forces”, in: ASME Journal of Lubrication technology, 95, 265–276, 1973.
  71. Hasan A., Benzamia A., “Investigating the impact of air temperature on the performance of a Tesla turbine – using CFD modelling”, in: International Journal of engineering Innovation & Research, 3, 794–802, 2014.
  72. Heberle F., Brüggemann D., “Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation”, in: Appl. Therm. Eng., 30, 1326–1332, 2006.
  73. Herrmann–Priesnitz B., Calderon–Munoz W.R., Salas E.A., Vargas–Uscategui A., Duarte–Mermoud M.A., Torres D.A., “Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow”, in: Physics of fluids, 28,1–16, 2016.
  74. Hertz H., “Über die Berührung fester elastischer Körper und über die Härte”, in: Verhandlungen des Vereins zur Beförderung des Gewerbefleisses, 449–463, 1882.
  75. Holland K., Design, construction and testing of a Tesla Turbine, M.Sc. Thesis, Laurentian University, Sudbury, 2015.
  76. Hoya G.P., Guha A., “The design of a test rig and study of the performance and efficiency of a Tesla disc turbine”, in: Proc. IMechE, Part A: J. Power and Energy, 223, 451–465, 2009.
  77. Ho–Yan B.P., “Tesla turbine for Pico Hydro applications”, in: Guelph Engineering Journal, 4, 1–8, 2011.
  78. Idel’chik I.E., Handbook of Hydraulic Resistance, Coefficients of Local Resistance and of Friction, first edition; 1960.
  79. IEA, CO2 Emissions overview, available at: http://www.iea.org/publications/freepublications/publication/CO2EmissionsfromFuelCombustionHighlights2017.pdf, last accessed on 23rd May 2018.
  80. IEA, Key Electricity trends 2017 based on monthly data, available at: https://www.iea.org/media/statistics/KeyElectricityTrends2017.pdf, last accessed on 23rd May 2018.
  81. Invernizzi C., Iora P., Silva P., “Bottoming micro–Rankine cycles for micro–gas turbines”, in: Appl. Therm. Eng., 27, 100–110, 2007.
  82. Jose R., Jose A., Benny A., Salus A., Benny B., “A theoretical study on surface finish, spacing between discs and performance of Tesla turbine”, in: International Advanced Research Journal in Science, Engineering and Technology, Thiruvananthapuram, 2016.
  83. Jose R., Jose A., Benny A., Salus A., Benny B., “An experimental study on the various parameters of Tesla turbine using CFD”, in: International Advanced Research Journal in Science, Engineering and Technology, Thiruvananthapuram, 2016.
  84. Joshi K.N., Sanghvi M.N., Dave T.D., “Hybrid Tesla Pelton wheel turbine”, in: International Journal of Scientific & Engineering Research, 7, 1702–1707, 2016.
  85. Khan M.U.S, Maqsood M.I., Ali E., Jamal S., Javed M., “Proposed applications with implementation techniques of the upcoming renewable energy resource, the Tesla turbine”, in: 6th Vacuum and surface conference of Asia and Australia, Journal of Physics conference series 349, 2013.
  86. Khan M.U.S., Ali E., Maqsood M.I., Nawaz H., “Modern improved and effective design of boundary layer turbine for robust control and efficient production of green energy”, in: 6th Vacuum and surface conference of Asia and Australia, Journal of Physics conference series 349, 2013.
  87. Klein S.A., Nellis G.F., Mastering EES, f–Chart software, 2012.
  88. Knowledge Center for Organic Rankine Cycle, History of ORC, available at: http://www.kcorc.org/en/science–technology/history/, last accessed on 25th May 2018.
  89. Kölling A., Lisker R., Hellwig U., Wildenauer F., “Friction expander for the generation of electricity (fege)”. In: International Conference on Renewable Energies and Power Quality (ICREPQ’15), La Coruna, 2015.
  90. Krishnan V., Design and Fabrication of cm–scale Tesla Turbines, Ph.D. Thesis, Berkeley University, California, 2015.
  91. Krishnan V.G., Iqbal Z., Maharbiz M.M., “A micro Tesla turbine for power generation from low pressure heads and evaporation driven flows”, in: Proceedings of Transducers ’11, Beijing, 2011.
  92. Krishnan V.G., Romanin V.D., Carey V.P., Maharbiz M.M., “Design and scaling of microscale Tesla turbines”, in: Journal of Micromechanics and Microengineering, 23, 2013.
  93. Ladino A.F.R, Numerical simulation of the flow field in a friction–type turbine (Tesla turbine), M.Sc. Thesis, Vienna University of Technology, 2004.
  94. Ladino A.F.R., “Numerical simulation of the flow field in a friction–type turbine (Tesla turbine)”, Technical Report, Vienna University of Technology, 2004.
  95. Lampart P., Jedrzejewski L., “Investigations of aerodynamics of Tesla bladeless microturbines”, in: Journal of Theoretical and Applied Mechanic, 49, 2, 477–499, 2011.
  96. Lampart P., Kosowski K., Piwowarski M., Jedrzejewski L., “Design analysis of Tesla micro–turbine operating on a low–boiling medium”, in: Polish Maritime Research, 28–33, 2009.
  97. Lawn M.J., An investigation of multiple–disk turbine performance parameters, M.Sc. Thesis, Arizona State University, 1972.
  98. Lawn M.J., Rice W., “Calculated design data for multiple–disk turbine using incompressible fluid”, in: Transactions of the ASME, Journal of Fluid Engineering, 252–258, 1974.
  99. Leaman A.B., The design, construction and investigation of a Tesla turbine, M.Sc. Thesis, University of Maryland, 1950.
  100. Lecompte S., Huisseune H., Van Den Broek M., Vanslambrouck B., De Paepe M., “Review of Organic Rankine Cycle (ORC) architectures for waste heat recovery”, in: Renewable and Sustainable Energy Reviews, 47, 448–461, 2015.
  101. Lee H.Y., Park S.L., Kim K.H., “Comparative analysis of thermodynamic performance and optimization of organic flash cycle (OFC) and organic Rankine cycle (ORC)”, in: Appl. Therm. Eng., 100, 680–690, 2016.
  102. Lemma E., Deam R.T., Toncich D., Collins R., “Characterisation of a small viscous flow turbine”, in: Experimental Thermal and Fluid Science, 33, 96–105, 2008.
  103. Lemmon E.W., Jacobsen R.T., “A new functional form and new fitting techniques for equations of state with application to pentafluoroethane (HFC–125)”, in: Journal of physical and chemical reference data, 34, 69–108, 2005.
  104. Lemmon E.W., Jacobsen R.T., “An international standard formulation for the thermodynamic properties of 1, 1, 1–trifluoroethane (HFC–143a) for temperatures from 161 to 450 K and pressures to 50 MPa”, in: Journal of Physical and Chemical Reference Data, 29, 521–552, 2000.
  105. Lemmon E.W., Span R., “Short fundamental equations of state for 20 industrial fluids”, in: Journal of Chemical & Engineering Data, 51, 785–850, 2006.
  106. Lemort V., Declaye S., Quoilin S., “Experimental characterization of a hermetic scroll expander for use in a micro–scale Rankine cycle”, in: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 226, 126–136, 2012.
  107. Lemort V., Guillaume L., Legros A., Declaye A., Quoilin S., “A comparison of piston, screw and scroll expanders for small–scale Rankine cycle systems”, in: Proceedings of the 3rd International Conference on Microgeneration and Related Technologies, 2013.
  108. Lemort V., Legros A., Positive displacement expanders for Organic Rankine Cycle systems, in: Macchi M. and Astolfi M., Organic Rankine Cycle (ORC) Power Systems, Technologies and Applications, 1st Edition, Woodhead Publishing, Elsevier.
  109. Lemort V., Quoilin S., Cuevas C., Lebrun J., “Testing and modeling a scroll expander integrated into and Organic Rankine Cycle”, in: Appl. Therm. Eng., 29, 3094–3102, 2009.
  110. Lentz A., Almanza R., “Solar–geothermal hybrid system”, in: Appl. Therm. Eng., 26, 1537–1544, 2006.
  111. Lezsovits F., “Decentralized energy supply possibilities based on biomass”, in: PERIODICA POLYTECHNICA SER. MECH. ENG., 47, 151–168, 2003.
  112. Li R., Wang H., Yao E., Li M., Nan W., “Experimental study on bladeless turbine using incompressible working medium”, in: Advances in Mechanical Engineering, 9, 1–12, 2017.
  113. Li X., Zhao C., Hu X., “Thermodynamic analysis of Organic Rankine Cycle with Ejector”, in: Energy, 42, 342–349, 2012.
  114. Lisker R., Hellwig U., Wildenauer FX., “Thin film condensation in a Tesla Turbine”, in: Wiss Beitr TH Wildau, 21, 71–76, 2017.
  115. Macchi E., Theoretical basis of the Organic Rankine Cycle, in: Macchi M. and Astolfi M., Organic Rankine Cycle (ORC) Power Systems, Technologies and Applications, 1st Edition, Woodhead Publishing, Elsevier.
  116. Mandal A., Saha S., “Performance analysis of a centimetre scale Tesla turbine for micro–air vehicles”, in: International Conference on Electronics, Communication and Aerospace Technology, 2017.
  117. Manente G., Lazzaretto A., Bonamico E., “Design guidelines for the choice between single and dual pressure layouts in organic Rankine cycle (ORC) systems”, in: Energy, 123, 413–431, 2017.
  118. Manfrida G., Pacini L., Talluri L., “A revised Tesla turbine concept for ORC applications”, in: Energy Procedia, 129, 1055–1062, 2017.
  119. Manfrida G., Pacini L., Talluri L., “An upgrade Tesla turbine concept for ORC applications”, in: Energy, 158, 33–40, 2018.
  120. Manfrida G., Talluri L., “Fluid dynamics assessment of the Tesla turbine rotor”, in: Thermal Science, 2018.
  121. Matsch L., Rice W., “An asymptotic solution for laminar flow of an incompressible fluid between rotating disks”, in: Transactions of the ASME, Journal of Applied Mechanics, 1968.
  122. Matsch L., Rice W., “Flow at low Reynolds number with partial admission between rotating disks”, in: Transactions of the ASME, Journal of Applied Mechanics, 1967.
  123. Matsch L., Rice W., “Potential flow between two parallel circular disks with partial admission”, in: Transactions of the ASME, Journal of Applied Mechanics, 1967.
  124. McDonald A.T., Fox R.W., “Effects of swirling Inlet Flow on Pressure Recovery in conical diffusers”, in AIAA Journal, 9, 1971.
  125. Mondéjar M.E., McLinden M.O., Lemmon E., “Thermodynamic properties of trans–1Chloro–3.3.3–trifluoropropene (R1233zd(E): Vapor Pressure, (p, ρ, T) Behavior, and Speed of Sound Measurements, and Equation of State”, in: Journal of Chemical & Engineering Data, 60, 2477–2489, 2015.
  126. Munson R.B., Okiishi T.H., Huebsch W.W., Rothmayer A.P., Fundamentals of Fluid Mechanics, 7th ed., John Wiley and Sons, Inc., 2013.
  127. NASA, Technology Readiness Level, available at: http://www.nasa.gov/content/technology–readiness–level/#.U5Vnl_ldVKY, accessed on October 2018.
  128. Neckel A.L., Godinho M., “Influence of geometry on the efficiency of convergent–divergent nozzles applied to Tesla turbines”, in: Experimental Thermal and Fluid Science, 62, 131–140, 2015.
  129. Nedelcu, D., Guran P., Cantaragiu A., “Theoretical and experimental research performed on the Tesla turbine”, in: Analele Universitatii Eftimie Murgu resita, 22, 255–263, 2015.
  130. Palacz M., Haida M., Smolka J., Plis M., Nowak A.J., Banasiak K., “A gas ejector for CO2 supercritical cycles”, in: Energy, 163, 1207–1216, 2018.
  131. Pandey R.J., Pudasaini S., Dhakal S., Uprety R.B., Neopane H.P., “Design and Computational Analysis of 1 kW Tesla turbine”, in: International Journal of Scientific and Research Publications, 4, 1–5, 2014.
  132. Patel N., Schmidt D.D., “Biomass boundary layer turbine power system”, in: Proceedings of International Joint Power Generation Conference, Phoenix, 2002.
  133. Pater L.L., Crowther E., Rice W., “Flow regime definition for flow between corotating disks”in: Transactions of the ASME, Journal of Fluid Engineering, 29–34, 1974.
  134. Peshlakay A., Challenging the versatility of the Tesla turbine: Working fluid variations and turbine performance, M.Sc. Thesis, Arizona State University, 2012.
  135. Placco G.M., Guimaraes N.F., Dos Santos R.S., “Passive residual energy utilization system in thermal cycles on water–cooled power reactors”, in: International Nuclear Atlantic Conference, Recife, 2013.
  136. Podergajs M., The Tesla Turbine, Seminar notes, University of Ljubiana, 2011.
  137. Polisetti S., Charan S.V., Miryala M., “Fabrication and study of the performance affecting the efficiency of a bladeless turbine”, in: International Journal of Scientific Research in Science and Technology, 3, 78–82, 2017.
  138. Preetham B.S. Weiss, L., “Investigations of a new free piston expander engine cycle”, in: Energy, 106, 535–545, 2016.
  139. Puzyrewski R., Tesch K., “1D model calibration based on 3D calculations for Tesla turbine”, in: Task quarterly, scientific bulletin of academic computer centre in Gdansk, 14, 237–248, 2010.
  140. Qi W., Deng Q., Feng Z., Yuan Q., “Influence of disc spacing distance on the aerodynamic performance and flow field of Tesla turbines”, in: Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, 2016.
  141. Qiu G., “Selection of working fluids for micro–CHP systems with ORC”, in: Renewable Energy, 48, 565–570, 2012.
  142. Qiu G., Liu H., Riffat S., “Expanders for micro–CHP systems with organic Rankine cycle”, in: Appl. Therm. Eng., 31, 3301–3307, 2011.
  143. Quoilin S., Declaye S., Legros A., Guillaume L., Lemort V., “Working fluid selection and operating maps for Organic Rankine Cycle expansion machines”, in: International Compressor Engineering Conference proceedings, 1546, 1–10, 2012.
  144. Quoilin S., Van Den Broek M., Declaye S., Dewallef P., Lemort V., “Techno–economic survey of Organic Rankine Cycle (ORC) systems” in: Renewable and Sustainable Energy Reviews, 22, 168–186, 2013.
  145. Raje A., Singh B., Churai R., Borwankar P., “A review of Tesla turbine”, in: International Journal of Mechanical Engineering and Technology, 6, 28–31, 2015.
  146. Rice W., “An analytical and experimental investigation of multiple–disk turbines”, in: ASME Journal of Engineering for Power, 87, 29–36, 1965.
  147. Rice W., “Tesla Turbomachinery”, in: Proceedings of IV International Nikola Tesla Symposium, 1991.
  148. Rohlik H.E., Radial Inflow Turbines, NASA SP 290, 3, 10, 1975.
  149. Romanin V., Carey, V.P., Norwood, Z., “Strategies for performance enhancement of Tesla turbines for combined heat and power applications”, in: Proceedings of the ASME 4th International Conference on Energy Sustainability, Phoenix, 2010.
  150. Romanin V.D., Carey V.P., “An integral perturbation model of flow and momentum transport in rotating microchannels with smooth or microstructured wall surfaces”, in: Physics of Fluids, 23, 1–11, 2011.
  151. Romanin V.D., Krishnan V.G., Carey V.P., Maharbiz M.M., “Experimental and analytical study of a sub–watt scale Tesla turbine performance”, in: Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition, Houston, 2012.
  152. Romanin V.D., Theory and Performance of Tesla turbines, Ph.D. Thesis, Berkeley University, California, 2012.
  153. Ruiz M., Carey V.P., “Experimental study of single phase heat transfer and pressure loss in a spiralling inflow micro channel heat sink”, in: ASME Journal of Heat Transfer, 137, 1–8, 2015.
  154. Ruiz M., Characterization of single phase and two–phase heat and momentum transport in a spiralling radial inflow micro channel heat sink, Ph.D. thesis, Berkeley University, California, 2015.
  155. Sandilya P., Biswas G., Rao D.P., Sharma A., “Numerical simulation of the gas flow and mass transfer between two coaxially rotating disks”, in: Numerical Heat Transfer, 39, 285–305, 2001.
  156. Schosser C., Experimental and numerical investigations and optimisation of Tesla–radial turbines, Ph.D. Thesis, Bundeswehr University, Munich, 2016.
  157. Schosser C., Fuchs T., Hain R., Lecheler S., Kahler C., “Three–dimensional particle tracking velocimetry in a Tesla turbine rotor using a non–intrusive calibration method”, in: 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, 2016.
  158. Schosser C., Lecheler S., Pfitzner M., “Analytical and numerical solutions of the rotor flow in Tesla turbines”, in: Periodica Polytechnica Mechanical Engineering, 61, 12–22, 2017.
  159. Schosser C., Lecheler S., Pfizner M., “A test rig for the investigation of the performance and flow field of Tesla friction turbines”, in: Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Dusseldorf, 2014.
  160. Schosser C., Pfitzner M., “A numerical study of the three–dimensional incompressible rotor airflow within a Tesla turbine”, in: Conference on Modelling Fluid Flow (CMFF’15), Budapest, 2015.
  161. Schuster A., Karellas S., Kakaras E., Spliethoff H., “Energetic and economic investigation of Organic Rankine Cycle applications”, in: Appl. Therm. Eng., 29, 1809–1817, 2009.
  162. Sengupta S., Guha A., “A theory of Tesla disc turbines”, in: Proc. of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 226, 651–663, 2012.
  163. Sengupta S., Guha A., “Analytical and computational solutions for three–dimensional flow–field and relative pathlines for the rotating flow in a Tesla disc turbine”, in: Computers & Fluids, 88, 344–353, 2013.
  164. Sengupta S., Guha A., “Inflow–rotor interaction in Tesla disc turbines: Effects of discrete inflows, finite disc thickness, and radial clearance on the fluid dynamics and performance of the turbine”, in: Proc. IMechE Part A: Journal of Power and Energy, 1–21, 2018.
  165. Sengupta, S., Guha A., “Flow of a nanofluid in the microspacing within co–rotating discs of a Tesla turbine”, in: Appl. Mathematical Modelling, 40, 485–499, 2016.
  166. Shah V., Dhokai S., “Tesla turbine experiment”, in: International Journal of Science and Research, 6, 113–116, 2017.
  167. Shah V., Dhokai S., Patel P., “Bladeless turbine – a review”, in: International Journal of Mechanical Engineering and Technology, 8, 232–236, 2017.
  168. Shames I.H., Mechanics of fluids, 4th ed., McGraw–Hill Professional, NewYork, 2002.
  169. Shepherd D.G., Principles of turbomachinery, The Macmillan Company, New York, 1956.
  170. Shimeles S., Design, simulation of fluid flow and optimization of operational parameters in Tesla multiple–disk turbine, M.Sc. Thesis, Addis Ababa University Institute of Technology, 2014.
  171. Shokati N., Ranjbar F., Mortaza Y., “Exergoeconomic analysis and optimization of basic, dual–pressure and dual–fluid ORCs and Kalina geothermal power plants: A comparative study”, in: Renewable Energy, 83, 527–542, 2015.
  172. Siddiqui M.S., Ahmed H., Ahmed S., “Numerical simulation of a compressed air driven Tesla turbine”, in: Proceedings of the ASME 2014 Power Conference, Baltimore, 2014.
  173. Singh A., “Inward flow between stationary and rotating disks”, in: Journal of Fluids Engineering, 136, 1–5, 2014.
  174. SKF, “Angular contact ball bearings, double row, 3207 A–2ZTN9/MT33”, available at: http://www.skf.com/group/products/bearings–units–housings/ball–bearings/angular–contact–ball–bearings/double–row–angular–contact–ball–bearings/double–row/index.html?designation=3207%20A–2ZTN9/MT33, last accessed on 2nd July 2018.
  175. SKF, Deep groove ball bearings, 61817–2RZ, available at: http://www.skf.com/group/products/bearings–units–housings/ball–bearings/deep–groove–ball–bearings/single–row–deep–groove–ball–bearings/deep–groove–ball–bearings/index.html?designation=61817–2RZ&unit=imperialUnit, last accessed on 2nd July 2018.
  176. SKF, Requisite minimum load, available at: http://www.skf.com/it/products/bearings–units–housings/roller–bearings/principles/selection–of–bearing–size/dynamic–bearing–loads/requisite–minimum–load/index.html, last accessed on 2nd July 2018.
  177. SKF, The SKF model for calculating the frictional moment, available at: http://www.skf.com/binary/86–299767/The%20SKF%20model%20for%20calculating%20the%20frictional%20moment_tcm_12–299767.pdf, last accessed on July 2018.
  178. Song J., Gu C.W., “1D model analysis of Tesla turbine for small scale organic Rankine cycle (ORC) system”, in: Proceedings of ASME turbo Expo: Turbomachinery Technical Conference and Exposition, Charlotte, 2017.
  179. Song J., Gu C.W., Li X.S., “Performance estimation of Tesla turbine applied in small scale Organic Rankine Cycle (ORC) system”, in: Appl. Therm. Eng., 110, 318–326, 2017.
  180. Song J., Ren X.D., Li X.S., Gu C.W., Zhang M.M., “One–dimensional model analysis and performance assessment of Tesla turbine”, in: Appl. Therm. Eng., 134, 546–554, 2018.
  181. Steidel R., Weiss H., “Performance test of a bladeless turbine for geothermal applications”. Technical Report Report No. UCID–17068, California Univ., Livermore (USA), Lawrence Livermore Lab., 1976.
  182. Talluri L., Fiaschi D., Neri G., Ciappi L., “Design and optimization of a Tesla turbine for ORC applications”, in: Appl. Energy, 226, 300–319, 2018.
  183. Talluri L., Lombardi G., “Simulation and Design Tool for ORC Axial Turbine stage”, in: Energy Procedia, 129, 277–284, 2017.
  184. Tartière T., Astolfi M., “A Word Overview of the Organic Rankine Cycle Market”, in: Energy Procedia, 129, 2–9, 2017.
  185. Tchanche B.F., Lambrinos G.R., Frangoudakis A., Papadakis G., “Low–grade heat conversion into power using organic Rankine cycles – a review of various applications” in: Renew. Sust. Energy Rev., 5, 3963–3979, 2011.
  186. Tempesti D., Manfrida G., Fiaschi D., “Thermodynamic analysis of two micro CHP systems operating with geothermal and solar energy”, in: Appl. Energy, 97, 609–617, 2012.
  187. Tesla N., Turbine, U.S. Patent No. 1 061 206, 1913.
  188. Thawichsri K., Nilnont W., “A comparing on the use of centrifugal turbine and Tesla turbine in an application of organic Rankine cycle”, in: International Journal of Advanced Culture Technology, 3, 58–66, 2015.
  189. Thawichsri K., Nilnont W., “A study on performance comparison of two–size Tesla turbines application in Organic Rankine Cycle machine”, in: International Symposium on the Fusion Technologies, Jeonju, 2014.
  190. Thiyagarajan V., GokulKumar V., Karthickeyan B., Kumar NE., Nikilaesh A., “Tesla turbine powered solar refrigerator”, in: International Journal of Recent Trends in Electrical & Electronics, 4, 50–55, 2017.
  191. Tillner–Roth R., Baehr H.D., “An international standard formulation for the thermodynamic properties of 1,1,1,2–Tetrafluoroethane (HFC–134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa”, in: Journal of Physical and Chemical Reference Data, 23, 657–729, 1994.
  192. Traum M.J., Hadi F., Akbar M.K., “Extending ‘assessment of Tesla turbine performance’ Model for sensitivity–focused experimental design”, in: ASME Journal of Energy Resources Technology, 140, 1–7, 2018.
  193. Traupel W., Thermische Turbomaschinen Zweiter Band Geländerte Betriebsbedingungen, Regelung, Mechanische Probleme, Temperaturprobleme, Springer–Verlag, New York, 1977.
  194. Truman C.R., Rice W., Jankowski D.F., “Laminar throughflow of a fluid containing particles between corotating disks”, in: Transactions of the ASME, Journal of Fluid Engineering, 87–92, 1979.
  195. Truman C.R., Rice W., Jankowski D.F., “Laminar throughflow of varying–quality steam between corotating disks”, in: Transactions of the ASME, Journal of Fluid Engineering, 194–200, 1978.
  196. Umashankar M., Anirudh V., Pishey K., “Investigation of Tesla turbine”, in: International Journal of Latest Technology in Engineering, Management & Applied Science, 6, 23–27, 2017.
  197. Vaja I., Gambarotta A., “Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs)”, in: Energy, 35, 1084–1093, 2010.
  198. Valente A., “Installation for pressure reduction of hydrocarbon gases in a near isothermal manner”, in: Proceedings of Abu Dhabi International Petroleum Exhibition and Conference, 2008.
  199. Van Wageningen T., Design analysis for a small scale hydrogen peroxide powered engine for a flapping wing mechanism micro air vehicle, M.Sc. Thesis, Delft University of Technology, 2012.
  200. Variava J.M., Bhavsar A.S., “Evaluation of Tesla turbo machine as turbine”, in: International Journal of Advance Research and Innovative Ideas in Education, 3, 3670–3682, 2017.
  201. Ventura C.A.M., Jacobs P.A., Rowlands A.S., Petrie–Repar P., Sauret E., “Preliminary Design and Performance Estimation of Radial Inflow Turbines: An Automated Approach”, in: Journal of Fluids Engineering, 134, 1–13, 2012.
  202. Wang D., Ling, X., Peng H., Liu L., Tao L., “Efficiency and optimal performance evaluation of organic Rankine cycle for low grade heat power generation”, in: Energy, 50, 343–352, 2013.
  203. Whitfield A., Baines N.C., Design of Radial Turbomachines, Longman Scientific and Technical, 1990.
  204. Yang Z., Weiss H.P., Traum M.J. “Dynamic dynamometry to characterize disk turbines for space–based power”, in: Proceedings of the Wisconsin Space conference, 2013.
  205. Yari M., Mehr A.S., Zare V., Mahmoudi S.M.S., Rosen M.A., “Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source”, in: Energy, 83, 712–722, 2015.
  206. Zahid I., Qadir A., Farooq M., Zaheer M.A., Qamar A., Zeeshan H.M.A., “Design and analysis of prototype Tesla turbine for power generation applications”, in: Technical Journal, University of Engineering and Technology, Taxila, 2016.
  207. Zhai H., Dai Y.J., Wu J.Y., Wang R.Z., “Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas”, in: Appl. Energy, 86, 1395–1404, 2009.
  208. Zhang K., Chen X., Markides N., Yang Y., Shen S., “Evaluation of ejector performance for an organic Rankine cycle combined power and cooling system”, in: Appl. Energy, 184, 404–412, 2016.
  209. Zhang Y.Q., Wu Y.T., Xia G.D., Ma C.F., Ji W.N., Liu S.W., Yang K., Yang F.B., “Development and experimental study on organic Rankine cycle system with single–screw expander for waste heat recovery from exhaust of diesel engine”, in: Energy, 77, 499–508, 2014.
  210. Zhao D., Ji C., Teo C., Li S., “Performance of small–scale bladeless electromagnetic energy harvesters driven by water or air”, in: Energy, 74, 99–108, 2014.
  211. Zhao D., Khoo J., “Rainwater and air driven 40 mm bladeless electromagnetic energy harvester”, in: Appl. Physics Letters, 103, 1–4, 2013.
  212. Ziviani D., Van Den Broek M., De Paepe M., “Geometry–Based Modeling of Single–Screw Expander for Organic Rankine Cycle Systems in Low–Grade Heat Recovery”, in: Energy Procedia, 61, 100–103, 2014.
  213. Zywica G., Kaczmarczyk T.Z., Inhatowicz E., “A review of expanders for power generation in small–scale organic Rankine cycle systems: Performance and operational aspects”, in: Proc. IMechE Part A: J. Power and Energy, 230, 669–684, 2016.
PDF
  • Anno di pubblicazione: 2020
  • Pagine: 234
  • eISBN: 978-88-5518-061-0
  • Licenza d'uso: CC BY 4.0
  • © 2020 Author(s)

XML
  • Anno di pubblicazione: 2020
  • eISBN: 978-88-5518-062-7
  • Licenza d'uso: CC BY 4.0
  • © 2020 Author(s)

PRINT
  • Anno di pubblicazione: 2020
  • Pagine: 234
  • ISBN: 978-88-5518-060-3
  • Licenza d'uso: CC BY 4.0
  • © 2020 Author(s)

Informazioni bibliografiche

Titolo del libro

Micro turbo expander design for small scale ORC

Sottotitolo del libro

Tesla turbine

Autori

Lorenzo Talluri

Opera sottoposta a peer review

Numero di pagine

234

Anno di pubblicazione

2020

Copyright

© 2020 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Editore

Firenze University Press

DOI

10.36253/978-88-5518-061-0

ISBN Print

978-88-5518-060-3

eISBN (pdf)

978-88-5518-061-0

eISBN (xml)

978-88-5518-062-7

Collana

Premio Tesi di Dottorato

ISSN della collana

2612-8039

e-ISSN della collana

2612-8020

1.771

Download dei libri

1.309

Visualizzazioni

Cerca in questo libro
Salva la citazione
Libri consigliati

1.336

Libri in accesso aperto

in catalogo

2.163

Capitoli di Libri

3.709.757

Download dei libri

4.371

Autori

da 920 Istituzioni e centri di ricerca

di 65 Nazioni

64

scientific boards

da 348 Istituzioni e centri di ricerca

di 43 Nazioni

1.246

I referee

da 379 Istituzioni e centri di ricerca

di 38 Nazioni