Monograph

Advanced Ground-Based Real and Synthetic Aperture Radar

  • Lapo Miccinesi,

Ground-based/terrestrial radar interferometry (GBRI) is a scientific topic of increasing interest in recent years. The GBRI is used in several field as remote sensing technique for monitoring natural environment (landslides, glacier, and mines) or infrastructures (bridges, towers). These sensors provide the displacement of targets by measuring the phase difference between sending and receiving radar signal. If the acquisition rate is enough the GBRI can provide the natural frequency, e.g. by calculating the Fourier transform of displacement. The research activity, presented in this work, concerns design and development of some advanced GBRI systems. These systems are related to the following issue: detection of displacement vector, Multiple Input Multiple Output (MIMO) and radars with 3D capability.

  • Keywords:
  • bistatic radar,
  • MIMO radar,
  • radar interferometry,
  • ground based radar,
  • three-dimensional radar,
  • radar monitoring,
+ Show More
Purchase

Lapo Miccinesi

University of Florence, Italy - ORCID: 0000-0002-7285-4588

Lapo Miccinesi received the M.S. degree in physics of particles in 2016 and the Ph.D. degree in information engineering from the University of Florence, Florence, Italy, in 2020. He is with the Department of Information Engineering, University of Florence, as a Post-Degree Grant Recipient.
Table of Contents

Table of contents

Preface

  1. Aguilera, E., M. Nannini, and A. Reigber, 2013, Wavelet-based compressed sensing for SAR tomography of forested areas: IEEE Transactions on Geoscience and Remote Sensing, v. 51, no. 12, p. 5283–5295,
  2. Antonello, G., J. Fortuny, D. Tarchi, N. Casagli, C. Del Ventisette, L. Guerri, G. Luzi, F. Mugnai, and D. Leva, 2008, Microwave interferometric sensors as a tool for space and time analysis of active volcano deformations: The Stromboli case, in 2008 Second Workshop on Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas, Napoli, Italy: IEEE, p. 1–6,
  3. Atzeni, C., A. Bicci, D. Dei, M. Fratini, and M. Pieraccini, 2010, Remote Survey of the Leaning Tower of Pisa by Interferometric Sensing: IEEE Geoscience and Remote Sensing Letters, v. 7, no. 1, p. 185–189,
  4. Atzori, S., I. Hunstad, M. Chini, S. Salvi, C. Tolomei, C. Bignami, S. Stramondo, E. Trasatti, A. Antonioli, and E. Boschi, 2009, Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (central Italy): Geophysical Research Letters, v. 36, no. 15,
  5. Baraniuk, R. G., 2007, Compressive Sensing [Lecture Notes]: IEEE Signal Processing Magazine, v. 24, no. 4, p. 118–121,
  6. Borgeaud, M., J. Noll, and A. Bellini, 1994, Multi-temporal comparisons of ERS-1 and JERS-1 SAR data for land applications, in International Geoscience and Remote Sensing Symposium (IGARSS): p. 1603–1605.
  7. Broussolle, J., V. Kyovtorov, M. Basso, G. Ferraro Di Silvi E Castiglione, J. Figueiredo Morgado, R. Giuliani, F. Oliveri, P. F. Sammartino, and D. Tarchi, 2014, MELISSA, a new class of ground based InSAR system. An example of application in support to the Costa Concordia emergency: ISPRS Journal of Photogrammetry and Remote Sensing, v. 91, p. 50–58,
  8. Bukenya, P., P. Moyo, H. Beushausen, and C. Oosthuizen, 2014, Health monitoring of concrete dams: A literature review: Journal of Civil Structural Health Monitoring, v. 4, no. 4, p. 235–244,
  9. Calvari, S., E. Intrieri, F. Di Traglia, A. Bonaccorso, N. Casagli, and A. Cristaldi, 2016, Monitoring crater-wall collapse at active volcanoes: a study of the 12 January 2013 event at Stromboli: Bulletin of Volcanology, v. 78, no. 5, p. 39,
  10. Candés, E. J., and M. B. Wakin, 2008, An introduction to compressive sampling: A sensing/sampling paradigm that goes against the common knowledge in data acquisition: IEEE Signal Processing Magazine, v. 25, no. 2, p. 21–30,
  11. Carden, E. P., and P. Fanning, 2004, Vibration based condition monitoring: A review: Structural Health Monitoring, v. 3, no. 4, p. 355–377,
  12. Carlà, T., V. Tofani, L. Lombardi, F. Raspini, S. Bianchini, D. Bertolo, P. Thuegaz, and N. Casagli, 2019, Combination of GNSS, satellite InSAR, and GBInSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment: Geomorphology, v. 335, p. 62–75,
  13. Castellano, A., A. Fraddosio, F. Martorano, G. Mininno, F. Paparella, and M. D. Piccioni, 2018, Structural health monitoring of a historic masonry bell tower by radar interferometric measurements, in 2018 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), Salerno: IEEE, p. 1–6,
  14. Chapuis, A., C. Rolstad, and R. Norland, 2010, Interpretation of amplitude data from a ground-based radar in combination with terrestrial photogrammetry and visual observations for calving monitoring of Kronebreen, Svalbard: Annals of Glaciology, v. 51, no. 55, p. 34–40,
  15. Chui, C. K., 2016, An Introduction to Wavelets: Elsevier.
  16. Corsini, A., P. Farina, G. Antonello, M. Barbieri, N. Casagli, F. Coren, L. Guerri, F. Ronchetti, P. Sterzai, and D. Tarchi, 2006, Space-borne and ground-based SAR interferometry as tools for landslide hazard management in civil protection: International Journal of Remote Sensing, v. 27, no. 12, p. 2351–2369,
  17. Crosetto, M., O. Monserrat, G. Luzi, M. Cuevas-Gonzalez, and N. Devanthery, 2014, A noninterferometric procedure for deformation measurement using GB-SAR imagery: IEEE Geoscience and Remote Sensing Letters, v. 11, no. 1, p. 34–38,
  18. D’Aria, D., G. Amoroso, A. Bicci, F. Coppi, M. Cecchetti, M. Rossi, and P. Falcone, 2018, Advanced tomographic tool for HYDRA radar system, in Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR: p. 484–486.
  19. Dei, D., D. Mecatti, and M. Pieraccini, 2013, Static Testing of a Bridge Using an Interferometric Radar: The Case Study of \dquotePonte degli Alpini, Belluno, Italy: The Scientific World Journal, v. 2013, p. 1–7,
  20. Dei, D., M. Pieraccini, M. Fratini, C. Atzeni, and G. Bartoli, 2009, Detection of vertical bending and torsional movements of a bridge using a coherent radar: NDT and E International, v. 42, no. 8, p. 741–747,
  21. Di Traglia, F. et al., 2014, The ground-based InSAR monitoring system at Stromboli volcano: Linking changes in displacement rate and intensity of persistent volcanic activity: Bulletin of Volcanology, v. 76, no. 2, p. 1–18,
  22. Di Traglia, F., T. Nolesini, A. Ciampalini, L. Solari, W. Frodella, F. Bellotti, A. Fumagalli, G. De Rosa, and N. Casagli, 2018, Tracking morphological changes and slope instability using spaceborne and ground-based SAR data: Geomorphology, v. 300, p. 95–112, \
  23. Di Traglia, F., T. Nolesini, L. Solari, et al., 2018, Lava delta deformation as a proxy for submarine slope instability: Earth and Planetary Science Letters, v. 488, p. 46–58,
  24. Farr, T. G. et al., 2007, The shuttle radar topography mission: Reviews of Geophysics, v. 45, no. 2,
  25. Farrar, C. R., T. W. Darling, A. Migliori, and W. E. Baker, 1999, Microwave interferometers for non-contact vibration measurements on large structures: Mechanical Systems and Signal Processing, v. 13, no. 2, p. 241–253,
  26. Feng, W., J. Friedt, G. Nico, and M. Sato, 2019, 3-D Ground-Based Imaging Radar Based on C-Band Cross-MIMO Array and Tensor Compressive Sensing: IEEE Geoscience and Remote Sensing Letters, p. 1–5,
  27. Feng, W., L. Yi, and M. Sato, 2018, Near range radar imaging based on block sparsity and cross-correlation fusion algorithm: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 11, no. 6, p. 2079–2089,
  28. Fortuny, J., 1998, An efficient 3-D near-field ISAR algorithm: IEEE Transactions on Aerospace and Electronic Systems, v. 34, no. 4, p. 1261–1270, \
  29. Fratini, M., M. Pieraccini, C. Atzeni, M. Betti, and G. Bartoli, 2011, Assessment of vibration reduction on the Baptistery of San Giovanni in Florence (Italy) after vehicular traffic block: Journal of Cultural Heritage, v. 12, no. 3, p. 323–328,
  30. Frodella, W., A. Ciampalini, F. Bardi, T. Salvatici, F. Di Traglia, G. Basile, and N. Casagli, 2018, A method for assessing and managing landslide residual hazard in urban areas: Landslides, v. 15, no. 2, p. 183–197,
  31. Frukacz, M., and A. Wieser, 2017, On the impact of rockfall catch fences on ground-based radar interferometry: Landslides, v. 14, no. 4, p. 1431–1440,
  32. Giordano, R., P. Guccione, G. Cifarelli, L. Mascolo, and G. Nico, 2015, Focusing SAR images by compressive sensing: Study of interferometric properties: p. 5352–5355,
  33. Grazzini, G., M. Pieraccini, D. Dei, and C. Atzeni, 2009, Simple microwave sensor for remote detection of structural vibration: Electronics Letters, v. 45, no. 11, p. 567,
  34. Hadi, M. A., S. Alshebeili, K. Jamil, and F. E. A. El-Samie, 2015, Compressive sensing applied to radar systems: an overview: Signal, Image and Video Processing, v. 9, p. 25–39,
  35. Han, H., and H. Lee, 2011, Motion of Campbell glacier, east antarctica, observed by satellite and ground-based interferometric synthetic aperture radar, in 3rd International Asia-Pacific Conference on Synthetic Aperture Radar, APSAR 2011: p. 4.
  36. Harries, N., D. Noon, H. Pritchett, and D. Bates, 2009, Slope Stability Radar for Managing Rock Fall Risks in Open Cut Mines, in roceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto: p. 8.
  37. Hasch, J., E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, 2012, Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band: IEEE Transactions on Microwave Theory and Techniques, v. 60, no. 3 PART 2, p. 845–860,
  38. He, L., and L. Carin, 2009, Exploiting structure in wavelet-based bayesian compressive sensing: IEEE Transactions on Signal Processing, v. 57, no. 9, p. 3488–3497,
  39. Hong, W., W. Tan, Y. Wang, and Y. Wu, 2010, Development and Experiments of Ground-Based SAR in IECAS for Advanced SAR Imaging Technique Validation, in EUSAR 2010: p. 4.
  40. Hu, C., J. Wang, W. Tian, T. Zeng, and R. Wang, 2017, Design and imaging of ground-based multiple-input multiple-output synthetic aperture radar (MIMO SAR) with non-collinear arrays: Sensors (Switzerland), v. 17, no. 3,
  41. Hu, C., Y. Deng, R. Wang, W. Tian, and T. Zeng, 2017, Two-Dimensional Deformation Measurement Based on Multiple Aperture Interferometry in Gb-SAR: IEEE Geoscience and Remote Sensing Letters, v. 14, no. 2, p. 208–212,
  42. Huang, Q., L. Qu, B. Wu, and G. Fang, 2010, UWB through-wall imaging based on compressive sensing: IEEE Transactions on Geoscience and Remote Sensing, v. 48, no. 3 PART2, p. 1408–1415,
  43. Iannini, L., and A. Monti Guarnieri, 2011, Atmospheric phase screen in ground-based radar: Statistics and compensation: IEEE Geoscience and Remote Sensing Letters, v. 8, no. 3, p. 537–541,
  44. Iglesias, R., X. Fabregas, A. Aguasca, J. J. Mallorqui, C. Lopez-Martinez, J. A. Gili, and J. Corominas, 2014, Atmospheric phase screen compensation in ground-based sar with a multiple-regression model over mountainous regions: IEEE Transactions on Geoscience and Remote Sensing, v. 52, no. 5, p. 2436–2449,
  45. Intrieri, E., F. Di Traglia, C. Del Ventisette, G. Gigli, F. Mugnai, G. Luzi, and N. Casagli, 2013, Flank instability of Stromboli volcano (Aeolian Islands, Southern Italy): Integration of GB-InSAR and geomorphological observations: Geomorphology, v. 201, p. 60–69,
  46. Intrieri, E., G. Gigli, M. Nocentini, L. Lombardi, F. Mugnai, F. Fidolini, and N. Casagli, 2015, Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application: Geomorphology, v. 241, p. 304–314,
  47. Jeffrey, T., 2009, Phased-array radar design: Application of radar fundamentals: Scitech Publishing, Phased-Array Radar Design: Application of Radar Fundamentals,
  48. Karlina, R., and M. Sato, 2011, Compressive sensing applied to imaging by ground-based polarimetric SAR: p. 2861–2864,
  49. Kuraoka, S., Y. Nakashima, R. Doke, and K. Mannen, 2018, Monitoring ground deformation of eruption center by ground-based interferometric synthetic aperture radar (GB-InSAR): a case study during the 2015 phreatic eruption of Hakone volcano: Earth, Planets and Space, v. 70, no. 1, p. 181,
  50. Lapo, M., and P. Massimiliano, 2019, Monostatic/Bistatic interferometric radar for monitoring slander structures, in 2019 IEEE Conference on Antenna Measurements & Applications (CAMA): IEEE.
  51. Laubie, E. E., B. D. Rigling, and R. P. Penno, 2015, Bistatic SAR image registration accuracy: p. 742–746,
  52. Lee, H., J.-H. Lee, K.-E. Kim, N.-H. Sung, and S.-J. Cho, 2014, Development of a Truck-Mounted Arc-Scanning Synthetic Aperture Radar: IEEE Transactions on Geoscience and Remote Sensing, v. 52, no. 5, p. 2773–2779,
  53. Li, C. J., R. Bhalla, and H. Ling, 2015, Investigation of the Dynamic Radar Signatures of a Vertical-Axis Wind Turbine: IEEE Antennas and Wireless Propagation Letters, v. 14, p. 763–766,
  54. Li, C. J., S.-T. Yang, and H. Ling, 2016, In-Situ ISAR Imaging of Wind Turbines: IEEE Transactions on Antennas and Propagation, v. 64, no. 8, p. 3587–3596,
  55. Li, J., and P. Stoica, 2007, MIMO radar with colocated antennas: IEEE Signal Processing Magazine, v. 24, no. 5, p. 106–114,
  56. Lombardi, L. et al., 2017, The Calatabiano landslide (southern Italy): preliminary GB-InSAR monitoring data and remote 3D mapping: Landslides, v. 14, no. 2, p. 685–696,
  57. Lopez-Sanchez, J. M., and J. Fortuny-Guasch, 2000, 3-D radar imaging using range migration techniques: IEEE Transactions on Antennas and Propagation, v. 48, no. 5, p. 728–737,
  58. Lukin, K., A. Mogila, P. Vyplavin, G. Galati, and G. Pavan, 2009, Novel concepts for surface movement radar design: International Journal of Microwave and Wireless Technologies, v. 1, no. 03, p. 163,
  59. Luo, Y., H. Song, R. Wang, Y. Deng, F. Zhao, and Z. Xu, 2014, Arc FMCW sar and applications in ground monitoring: IEEE Transactions on Geoscience and Remote Sensing, v. 52, no. 9, p. 5989–5998,
  60. Luojus, K. P., J. T. Pulliainen, S. J. Metsämäki, and M. T. Hallikainen, 2007, Snow-covered area estimation using satellite radar wide-swath images: IEEE Transactions on Geoscience and Remote Sensing, v. 45, no. 4, p. 978–988,
  61. Luzi, G., L. Noferini, D. Mecatti, G. Macaluso, M. Pieraccini, C. Atzeni, A. Schaffhauser, R. Fromm, and T. Nagler, 2009, Using a Ground-Based SAR Interferometer and a Terrestrial Laser Scanner to Monitor a Snow-Covered Slope: Results From an Experimental Data Collection in Tyrol (Austria): IEEE Transactions on Geoscience and Remote Sensing, v. 47, no. 2, p. 382–393,
  62. Luzi, G., M. Crosetto, and M. Cuevas-González, 2014, A radar-based monitoring of the Collserola tower (Barcelona): Mechanical Systems and Signal Processing, v. 49, no. 1, p. 234–248,
  63. Luzi, G., M. Pieraccini, D. Mecatti, L. Noferini, G. Macaluso, A. Tamburini, and C. Atzeni, 2007, Monitoring of an Alpine Glacier by Means of Ground-Based SAR Interferometry: IEEE Geoscience and Remote Sensing Letters, v. 4, no. 3, p. 495–499,
  64. Ma, C., T. S. Yeo, Y. Zhao, and J. Feng, 2014, MIMO radar 3D imaging based on combined amplitude and total variation cost function with sequential order one negative exponential form: IEEE Transactions on Image Processing, v. 23, no. 5, p. 2168–2183,
  65. Martinez-Vazquez, A., and J. Fortuny-Guasch, 2008, A GB-SAR Processor for Snow Avalanche Identification: IEEE Transactions on Geoscience and Remote Sensing, v. 46, no. 11, p. 3948–3956,
  66. Martinez-Vazquez, A., J. Fortuny-Guasch, and U. Gruber, 2005, Monitoring of the snow cover, in EARSeL eProceedings: p. 8.
  67. Massa, A., P. Rocca, and G. Oliveri, 2015, Compressive sensing in electromagnetics - A review: IEEE Antennas and Propagation Magazine, v. 57, no. 1, p. 224–238,
  68. Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute, 1993, The displacement field of the Landers earthquake mapped by radar interferometry: Nature, v. 364, no. 6433, p. 138–142,
  69. Mecatti, D., L. Noferini, G. Macaluso, M. Pieraccini, G. Luzi, C. Atzeni, and A. Tamburini, 2007, Remote sensing of glacier by ground-based radar interferometry, in International Geoscience and Remote Sensing Symposium (IGARSS): p. 4501–4504,
  70. Monserrat, O., M. Crosetto, and G. Luzi, 2014, A review of ground-based SAR interferometry for deformation measurement: ISPRS Journal of Photogrammetry and Remote Sensing, v. 93, p. 40–48,
  71. Moreira, A., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, 2013, A tutorial on synthetic aperture radar: IEEE Geoscience and Remote Sensing Magazine, v. 1, no. 1, p. 6–43,
  72. Munoz-Ferreras, J.-M., Z. Peng, Y. Tang, R. Gomez-Garcia, D. Liang, and C. Li, 2016, A step forward towards radar sensor networks for structural health monitoring of wind turbines, in IEEE Radio and Wireless Symposium, RWS: p. 23–25,
  73. Nico, G., G. Cifarelli, G. Miccoli, F. Soccodato, W. Feng, M. Sato, S. Miliziano, and M. Marini, 2018, Measurement of Pier Deformation Patterns by Ground-Based SAR Interferometry: Application to a Bollard Pull Trial: IEEE Journal of Oceanic Engineering, v. 43, no. 4, p. 822–829,
  74. Noferini, L., D. Mecatti, G. Macaluso, M. Pieraccini, and C. Atzeni, 2009, Monitoring of Belvedere Glacier using a wide angle GB-SAR interferometer: Journal of Applied Geophysics, v. 68, no. 2, p. 289–293,
  75. Noferini, L., M. Pieraccini, D. Mecatti, G. Luzi, C. Atzeni, A. Tamburini, and M. Broccolato, 2005, Permanent scatterers analysis for atmospheric correction in ground-based SAR interferometry: IEEE Transactions on Geoscience and Remote Sensing, v. 43, no. 7, p. 1459–1470,
  76. Noferini, L., M. Pieraccini, G. Luzi, D. Mecatti, G. Macaluso, and C. Atzeni, 2006, Ground-based radar interferometry for monitoring unstable slopes, in International Geoscience and Remote Sensing Symposium (IGARSS): p. 4088–4091,
  77. Noferini, L., M. Pieraccini, G. Luzi, D. Mecatti, G. Macaluso, and C. Atzeni, 2006, Ground-based radar interferometry for terrain mapping, in International Geoscience and Remote Sensing Symposium (IGARSS): p. 2569–2572,
  78. Nolesini, T., F. Di Traglia, C. Del Ventisette, S. Moretti, and N. Casagli, 2013, Deformations and slope instability on Stromboli volcano: Integration of GBInSAR data and analog modeling: Geomorphology, v. 180–181, p. 242–254,
  79. Oerlemans, J. et al., 1998, Modelling the response of glaciers to climate warming: Climate Dynamics, v. 14, no. 4, p. 267–274,
  80. Pieraccini Massimiliano, M. L., Rojhani Neda, n.d., MIMO radar with dense or random pattern: analysis of phase and positioning error sensitivity, in 2019 Progress in Electromagnetics Research Symposium (PIERS-Rome).
  81. Pieraccini, M, D. Tarchi, H. Rudolf, D. Leva, G. Luzi, G. Bartoli, and C. Atzeni, 2000, Structural static testing by interferometric synthetic radar: NDT & E International, v. 33, no. 8, p. 565–570,
  82. Pieraccini, M., 2013a, Monitoring of civil infrastructures by interferometric radar: A review: The Scientific World Journal, v. 2013,
  83. Pieraccini, M., 2013b, Real Beam vs. Synthetic aperture radar for slope monitoring, in Progress in Electromagnetics Research Symposium: p. 1627–1632.
  84. Pieraccini, M., 2017, Extensive Measurement Campaign Using Interferometric Radar: Journal of Performance of Constructed Facilities, v. 31, no. 3, p. 04016113,
  85. Pieraccini, M., 2018, Noise Performance Comparison Between Continuous Wave and Stroboscopic Pulse Ground Penetrating Radar: IEEE Geoscience and Remote Sensing Letters, v. 15, no. 2, p. 222–226,
  86. Pieraccini, M., and F. Papi, 2016, Design of A CW-SF Ground Penetrating Radar, in 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS): p. 7430–7433,
  87. Pieraccini, M., and L. Miccinesi, 2017, ArcSAR: Theory, Simulations, and Experimental Verification: IEEE Transactions on Microwave Theory and Techniques, v. 65, no. 1, p. 293–301,
  88. Pieraccini, M., and L. Miccinesi, 2018a, Bistatic ArcSAR, in 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC): p. 1–4,
  89. Pieraccini, M., and L. Miccinesi, 2018c, Bistatic ground-based synthetic aperture radar, in Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR: p. 275–279.
  90. Pieraccini, M., and L. Miccinesi, 2018d, Cross-pol long-cable transponder for bistatic ground-based synthetic aperture radar: Electronics Letters, v. 54, no. 21, p. 1233–1235,
  91. Pieraccini, M., and L. Miccinesi, 2018e, Cross-pol transponder with frequency shifter for bistatic ground-based synthetic aperture radar: Remote Sensing, v. 10, no. 9,
  92. Pieraccini, M., and L. Miccinesi, 2018h, RotoSAR for monitoring bridges, in European Microwave Week 2017: “A Prime Year for a Prime Event”, EuMW 2017 - Conference Proceedings; 14th European Microwave Conference, EURAD 2017: p. 311–314,
  93. Pieraccini, M., and L. Miccinesi, 2019a, An Interferometric MIMO Radar for Bridge Monitoring: IEEE Geoscience and Remote Sensing Letters, p. 1–5,
  94. Pieraccini, M., and L. Miccinesi, 2019b, Ground-based radar interferometry: A bibliographic review: Remote Sensing, v. 11, no. 9,
  95. Pieraccini, M., D. Dei, M. Betti, G. Bartoli, G. Tucci, and N. Guardini, 2014, Dynamic identification of historic masonry towers through an expeditious and no-contact approach: Application to the \dquoteTorre del Mangia in Siena (Italy): Journal of Cultural Heritage, v. 15, no. 3, p. 275–282,
  96. Pieraccini, M., D. Tarchi, H. Rudolf, D. Leva, G. Luzi, and C. Atzeni, 2000, Interferometric radar for remote monitoring of building deformations: Electronics Letters, v. 36, no. 6, p. 569–570,
  97. Pieraccini, M., F. Papi, and S. Rocchio, 2015, Interferometric RotoSAR: Electronics Letters, v. 51, no. 18, p. 1451–1453,
  98. Pieraccini, M., G. Luzi, and C. Atzeni, 2001, Terrain mapping by ground-based interferometric radar: IEEE Transactions on Geoscience and Remote Sensing, v. 39, no. 10, p. 2176–2181,
  99. Pieraccini, M., G. Luzi, D. Mecatti, L. Noferini, and C. Atzeni, 2007, Ground-based SAR for short and long term monitoring of unstable slopes: p. 92–95,
  100. Pieraccini, M., G. Luzi, D. Mecatti, M. Fratini, L. Noferini, L. Carissimi, G. Franchioni, and C. Atzeni, 2004, Remote sensing of building structural displacements using a microwave interferometer with imaging capability: NDT and E International, v. 37, no. 7, p. 545–550,
  101. PIERACCINI, M., L. MICCINESI, and N. ROJHANI, 2017, GBSAR con capacitá di acquisire immagini tridimensionali, 102017000145769.
  102. Pieraccini, M., L. Miccinesi, and N. Rojhani, 2019, Ground Based Synthetic Aperture Radar with 3D Imaging Capability, in 2019 16th European Radar Conference, EuRAD 2019.
  103. Pieraccini, M., L. Miccinesi, and N. Rojhani, n.d., Monitoring of Vespucci bridge in Florence, Italy using a fast real aperture radar and a MIMO radar, in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium: IEEE.
  104. Pieraccini, M., L. Noferini, D. Mecatti, C. Atzeni, G. Teza, A. Galgaro, and N. Zaltron, 2006, Integration of Radar Interferometry and Laser Scanning for Remote Monitoring of an Urban Site Built on a Sliding Slope: IEEE Transactions on Geoscience and Remote Sensing, v. 44, no. 9, p. 2335–2342,
  105. Pieraccini, M., L. Noferini, D. Mecatti, G. Macaluso, G. Luzi, and C. Atzeni, 2008, Digital elevation models by a GBSAR interferometer for monitoring glaciers: The case study of Belvedere Glacier: p. IV1061–IV1064,
  106. Pieraccini, M., M. Betti, and P. Camelia, 2016, A METHOD AND APPARATUS FOR MONITORING SLENDER ELEMENTS BY MEANS OF DYNAMIC MEASUREMENTS OF STRUCTURAL ASYMMETRY, WO2016059462A1.
  107. Pieraccini, M., M. Fratini, D. Dei, and C. Atzeni, 2009, Structural testing of Historical Heritage Site Towers by microwave remote sensing: Journal of Cultural Heritage, v. 10, no. 2, p. 174–182,
  108. Pieraccini, M., M. Fratini, F. Parrini, C. Atzeni, and G. Bartoli, 2008, Interferometric radar vs. accelerometer for dynamic monitoring of large structures: An experimental comparison: NDT and E International, v. 41, no. 4, p. 258–264,
  109. Pieraccini, M., N. Casagli, G. Luzi, D. Tarchi, D. Mecatti, L. Noferini, and C. Atzeni, 2003, Landslide monitoring by ground-based radar interferometry: A field test in Valdarno (Italy): International Journal of Remote Sensing, v. 24, no. 6, p. 1385–1391,
  110. Pieraccini, Massimiliano, L. Miccinesi, and N. Rojhani, 2017, A GBSAR Operating in Monostatic and Bistatic Modalities for Retrieving the Displacement Vector: IEEE Geoscience and Remote Sensing Letters, v. 14, no. 9, p. 1494–1498,
  111. Pieraccini, Massimiliano, L. Miccinesi, and N. Rojhani, 2019, A radar with 3D imaging capability that uses synthetic aperture in azimuth and compressive sensing MIMO in elevation, in 2019 16th European Radar Conference (EuRAD): p. 65–68.
  112. Pieraccini, Massimiliano, M. Betti, D. Forcellini, D. Dei, F. Papi, G. Bartoli, L. Facchini, R. Corazzi, and V. C. Kovacevic, 2017, Radar detection of pedestrian-induced vibrations on Michelangelo’s David: PLOS ONE, v. 12, no. 4, p. e0174480,
  113. Pieraccini, Massimiliano, N. Rojhani, and L. Miccinesi, 2018, Compressive Sensing for Ground Based Synthetic Aperture Radar: Remote Sensing, v. 10, no. 12, p. 1960,
  114. Pipia, L., X. Fabregas, A. Aguasca, C. Lopez-Martinez, S. Duque, J. J. Mallorqui, and J. Marturia, 2009, Polarimetric Differential SAR Interferometry: First Results With Ground-Based Measurements: IEEE Geoscience and Remote Sensing Letters, v. 6, no. 1, p. 167–171,
  115. Placidi, S., A. Meta, L. Testa, and S. Rodelsperger, 2015, Monitoring structures with FastGBSAR, in 2015 IEEE Radar Conference - Proceedings: p. 435–439,
  116. Pratesi, F., T. Nolesini, S. Bianchini, D. Leva, L. Lombardi, R. Fanti, and N. Casagli, 2015, Early Warning GBInSAR-Based Method for Monitoring Volterra (Tuscany, Italy) City Walls: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 8, no. 4, p. 1753–1762,
  117. Qian, S., and D. Chen, 1999, Joint Analysis: IEEE Signal Processing Magazine, v. 16, no. 2, p. 52–67,
  118. Reeves, B. A., G. F. Stickley, D. A. Noon, and I. D. Longstaff, 2000, Developments in monitoring mine slope stability using radar interferometry, in IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), Honolulu, HI, USA: IEEE, p. 2325–2327,
  119. Salomon, D., 2004, Data Compression: The Complete Reference: Springer Science & Business Media.
  120. Schaffhauser, A., M. Adams, R. Fromm, P. Jörg, G. Luzi, L. Noferini, and R. Sailer, 2008, Remote sensing based retrieval of snow cover properties: Cold Regions Science and Technology, v. 54, no. 3, p. 164–175,
  121. Serrano-Juan, A. et al., 2016, Gb-SAR interferometry displacement measurements during dewatering in construction works. Case of La Sagrera railway station in Barcelona, Spain: Engineering Geology, v. 205, p. 104–115,
  122. Severin, J., E. Eberhardt, L. Leoni, and S. Fortin, 2014, Development and application of a pseudo-3D pit slope displacement map derived from ground-based radar: Engineering Geology, v. 181, p. 202–211,
  123. Skolnik, M. I., 1970, Radar handbook: McGraw-Hill, Incorporated.
  124. Srivastava, S. K., T. I. Lukowski, R. B. Gray, N. W. Shepherd, and R. K. Hawkins, 1996, RADARSAT: image quality management and performance results, in Canadian Conference on Electrical and Computer Engineering: p. 21–23.
  125. Tapete, D., N. Casagli, G. Luzi, R. Fanti, G. Gigli, and D. Leva, 2013, Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments: Journal of Archaeological Science, v. 40, no. 1, p. 176–189,
  126. Tarchi, D., E. Ohlmer, and A. Sieber, 1997, Monitoring of structural changes by radar interferometry: Research in Nondestructive Evaluation, v. 9, no. 4, p. 213–225,
  127. Tarchi, D., F. Oliveri, and P. F. Sammartino, 2013, MIMO radar and ground-based SAR imaging systems: Equivalent approaches for remote sensing: IEEE Transactions on Geoscience and Remote Sensing, v. 51, no. 1, p. 425–435,
  128. Tarchi, D., H. Rudolf, G. Luzi, L. Chiarantini, P. Coppo, and A. J. Sieber, 1999, SAR interferometry for structural changes detection: a demonstration test on a dam, in International Geoscience and Remote Sensing Symposium (IGARSS): p. 1522–1524.
  129. Tarchi, D., H. Rudolf, M. Pieraccini, and C. Atzeni, 2000, Remote monitoring of buildings using a ground-based SAR: Application to cultural heritage survey: International Journal of Remote Sensing, v. 21, no. 18, p. 3545–3551,
  130. Tarchi, D., N. Casagli, R. Fanti, D. D. Leva, G. Luzi, A. Pasuto, M. Pieraccini, and S. Silvano, 2003, Landslide monitoring by using ground-based SAR interferometry: An example of application to the Tessina landslide in Italy: Engineering Geology, v. 68, no. 1–2, p. 15–30,
  131. Tropp, J. A., and A. C. Gilbert, 2007, Signal recovery from random measurements via orthogonal matching pursuit: IEEE Transactions on Information Theory, v. 53, no. 12, p. 4655–4666,
  132. Viviani, F., A. Michelini, L. Mayer, and F. Conni, 2018, IBIS-ArcSAR: an Innovative Ground-Based SAR System for Slope Monitoring, in IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium: p. 1348–1351,
  133. Wadge, G., D. G. Macfarlane, D. A. Robertson, A. J. Hale, H. Pinkerton, R. V. Burrell, G. E. Norton, and M. R. James, 2005, AVTIS: A novel millimetre-wave ground based instrument for volcano remote sensing: Journal of Volcanology and Geothermal Research, v. 146, no. 4, p. 307–318,
  134. Walker, J. S., 2019, A Primer on Wavelets and Their Scientific Applications: CRC Press,
  135. Werner, Charles, T. Strozzi, A. Wiesmann, and U. Wegmüller, 2008, GAMMA’S PORTABLE RADAR INTERFEROMETER, in 13th FIG Symposium on Deformation Measurement Analysis, Lisbon, Portugal: p. 10.
  136. Wickerhauser, M. V., 1996, Adapted Wavelet Analysis : From Theory to Software: A K Peters/CRC Press,
  137. Xie, S., T. H. Dixon, D. Voytenko, D. M. Holland, D. Holland, and T. Zheng, 2016, Precursor motion to iceberg calving at Jakobshavn Isbræ, Greenland, observed with terrestrial radar interferometry: Journal of Glaciology, v. 62, no. 236, p. 1134–1142,
  138. Yang, A. Y., S. S. Sastry, A. Ganesh, and Y. Ma, 2010, Fast l1-minimization algorithms and an application in robust face recognition: A review: p. 1849–1852,
  139. Yigit, E., S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, 2012, Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: Experimental studies at short ranges: Journal of Infrared, Millimeter, and Terahertz Waves, v. 33, no. 12, p. 1227–1238,
  140. Zeng, T., C. Mao, C. Hu, X. Yang, and W. Tian, 2015, Multi-static MIMO-SAR three dimensional deformation measurement system, in 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, Singapore: IEEE, p. 297–301,
  141. Zhang, X., B.-Y. Lu, Q. Song, and M. Leng, 2011, Atmospheric disturbance correction in Ground-Based SAR differential interferometry, in Proceedings of 2011 IEEE CIE International Conference on Radar, RADAR 2011: p. 1574–1577,
  142. Zheng-Shu Zhou, W.-M. Boerner, and M. Sato, 2004, Development of a ground-based polarimetric broadband SAR system for noninvasive ground-truth validation in vegetation monitoring: IEEE Transactions on Geoscience and Remote Sensing, v. 42, no. 9, p. 1803–1810,
  143. Zhou, S.-G., P.-K. Tan, and T.-H. Chio, 2012, Low-profile, wideband dual-polarized antenna with high isolation and low cross polarization: IEEE Antennas and Wireless Propagation Letters, v. 11, p. 1032–1035,
  144. Zhou, Z.-S., W.-M. Boerner, and M. Sato, 2004, Development of a ground-based polarimetric broadband SAR system for noninvasive ground-truth validation in vegetation monitoring: IEEE Transactions on Geoscience and Remote Sensing, v. 42, no. 9, p. 1803–1810,
  145. Zhu, X. X., and R. Bamler, 2010, Tomographic SAR inversion by L1-norm regularization-the compressive sensing approach: IEEE Transactions on Geoscience and Remote Sensing, v. 48, no. 10, p. 3839–3846,
  146. Zonno, M., 2014, GBSAR data focusing based on compressive sensing: p. 347–350.
PDF
  • Publication Year: 2021
  • Pages: 144
  • eISBN: 978-88-5518-377-2
  • Content License: CC BY 4.0
  • © 2021 Author(s)

XML
  • Publication Year: 2021
  • Pages: 144
  • eISBN: 978-88-5518-378-9
  • Content License: CC BY 4.0
  • © 2021 Author(s)

PRINT
  • Publication Year: 2021
  • Pages: 144
  • eISBN: 978-88-5518-376-5
  • Content License: CC BY 4.0
  • © 2021 Author(s)

Bibliographic Information

Book Title

Advanced Ground-Based Real and Synthetic Aperture Radar

Authors

Lapo Miccinesi

Peer Reviewed

Number of Pages

144

Publication Year

2021

Copyright Information

© 2021 Author(s)

Content License

CC BY 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/978-88-5518-377-2

ISBN Print

978-88-5518-376-5

eISBN (pdf)

978-88-5518-377-2

eISBN (xml)

978-88-5518-378-9

Series Title

Premio Tesi di Dottorato

Series Issn ISSN

2612-8039

Series E-Issn

2612-8020

76

Fulltext
downloads

172

Views

Search in This Book
Export Citation
Suggested Books

1,176

Open Access Books

in the Catalogue

815

Book Chapters

1,712,850

Fulltext
downloads

2,573

Authors

from 510 Research Institutions

of 51 Nations

49

scientific boards

from 259 Research Institutions

of 37 Nations

783

Referees

from 187 Research Institutions

of 32 Nations