Contenuto in:
Capitolo

Unemployment dynamics in Italy: a counterfactual analysis at Covid time

  • Illya Bakurov
  • Fabrizio Culotta

This work performs a counterfactual analysis on unemployment dynamics in Italy during the year 2020. In doing so, ARIMA models are estimated and used to make projections for the 2020 quarters. This exercise is performed at population level and for each gender, age and educational groups. Data are from the Italian Labor Force Survey covering the years 2015-2019 at quarterly frequency. Over the quarters of the year 2020, i.e. a time period covered by the Covid-19 pandemic and related restrictions, actual and counterfactual unemployment dynamics are compared. Overall, this work tries to answer to the following question: what would have happened to unemployment dynamics if Covid-19 pandemic and related restrictions would not arise as they did? Results can be informative to policymakers if the ARIMA projections can represent a reference for the aftermath of the pandemic.

  • Keywords:
  • Covid-19,
  • Italy,
  • Unemployment Dynamics,
  • Counterfactual Analysis,
  • ARIMA,
+ Mostra di più

Illya Bakurov

Nova University of Lisbon, Portugal - ORCID: 0000-0002-6458-942X

Fabrizio Culotta

University of Genoa, Italy - ORCID: 0000-0002-3910-3088

  1. Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of econometrics, 54(1-3), 159-178.
  2. Hyndman, R. J., Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
  3. Hyndman, R. J., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'Hara-Wild, M., ... , Wang, E. (2020). Package ‘forecast’. https://cran. r-project.org/web/packages/forecast/forecast.pdf.
PDF
  • Anno di pubblicazione: 2021
  • Pagine: 215-220

XML
  • Anno di pubblicazione: 2021

Informazioni sul capitolo

Titolo del capitolo

Unemployment dynamics in Italy: a counterfactual analysis at Covid time

Autori

Illya Bakurov, Fabrizio Culotta

Lingua

English

DOI

10.36253/978-88-5518-461-8.40

Opera sottoposta a peer review

Anno di pubblicazione

2021

Copyright

© 2021 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Informazioni bibliografiche

Titolo del libro

ASA 2021 Statistics and Information Systems for Policy Evaluation

Sottotitolo del libro

BOOK OF SHORT PAPERS of the on-site conference

Curatori

Bruno Bertaccini, Luigi Fabbris, Alessandra Petrucci

Opera sottoposta a peer review

Anno di pubblicazione

2021

Copyright

© 2021 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Editore

Firenze University Press

DOI

10.36253/978-88-5518-461-8

eISBN (pdf)

978-88-5518-461-8

eISBN (xml)

978-88-5518-462-5

Collana

Proceedings e report

ISSN della collana

2704-601X

e-ISSN della collana

2704-5846

280

Download dei libri

392

Visualizzazioni

Salva la citazione

1.383

Libri in accesso aperto

in catalogo

2.567

Capitoli di Libri

4.133.292

Download dei libri

4.947

Autori

da 1047 Istituzioni e centri di ricerca

di 66 Nazioni

69

scientific boards

da 368 Istituzioni e centri di ricerca

di 43 Nazioni

1.300

I referee

da 393 Istituzioni e centri di ricerca

di 38 Nazioni