Contained in:
Book Chapter

Topological Relationship Modelling for Industrial Facility Digitisation Using Graph Neural Networks

  • Haritha Jayasinghe
  • Ioannis Brilakis

There is rising demand for automated digital twin construction based on point cloud scans, especially in the domain of industrial facilities. Yet, current automation approaches focus almost exclusively on geometric modelling. The output of these methods is a disjoint cluster of individual elements, while element relationships are ignored. This research demonstrates the feasibility of adopting Graph Neural Networks (GNN) for automated detection of connectivity relationships between elements in industrial facility scans. We propose a novel method which represents elements and relationships as graph nodes and edges respectively. Element geometry is encoded into graph node features. This allows relationship inference to be modelled as a graph link prediction task. We thereby demonstrate that connectivity relationships can be learned from existing design files, without requiring domain specific, hand-coded rules, or manual annotations. Preliminary results show that our method performs successfully on a synthetic point cloud testset generated from design files with a 0.64 F1 score. We further demonstrate that the method adapts to occluded real-world scans. The method can be further extended with the introduction of more descriptive node features. Additionally, we present tools for relationship annotation and visualisation to aid relationship detection

  • Keywords:
  • BIM,
  • Digital twin,
  • GNN,
  • machine learning,
+ Show More

Haritha Jayasinghe

University of Cambridge, United Kingdom - ORCID: 0000-0002-6236-8092

Ioannis Brilakis

University of Cambridge, United Kingdom - ORCID: 0000-0003-1829-2083

  1. Agapaki, E., S. M., Glyn-Davies, A., Mandoki, S., Brilakis, I., M., Candidate, P. D., O’, L., & Reader, R. (2019). CLOI: A Shape Classification Benchmark Dataset for Industrial Facilities. DOI: 10.1061/9780784482445.009
  2. Agapaki, E., & Brilakis, I. (2022). Geometric Digital Twinning of Industrial Facilities: Retrieval of Industrial Shapes. DOI: 10.48550/arxiv.2202.04834
  3. Agapaki, E., Miatt, G., & Brilakis, I. (2018). Prioritizing object types for modelling existing industrial facilities. Automation in Construction, 96, 211–223. DOI: 10.1016/j.autcon.2018.09.011
  4. Bloch, T., & Sacks, R. (2020). Clustering Information Types for Semantic Enrichment of Building Information Models to Support Automated Code Compliance Checking. Journal of Computing in Civil Engineering, 34(6), 04020040. DOI: 10.1061/(asce)cp.1943-5487.0000922
  5. Buruzs, A., Šipetić, M., Blank-Landeshammer, B., & Zucker, G. (2022). IFC BIM Model Enrichment with Space Function Information Using Graph Neural Networks. Energies, 15(8). DOI: 10.3390/en15082937
  6. Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive Representation Learning on Large Graphs. http://arxiv.org/abs/1706.02216
  7. Ismail, A., Strug, B., & Ślusarczyk, G. (2018). Building Knowledge Extraction from BIM/IFC Data for Analysis in Graph Databases (pp. 652–664). DOI: 10.1007/978-3-319-91262-2_57
  8. Kipf, T. N., & Welling, M. (2016). Semi-Supervised Classification with Graph Convolutional Networks. 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings. DOI: 10.48550/arxiv.1609.02907
  9. Nguyen, T. H., Oloufa, A. A., & Nassar, K. (2005). Algorithms for automated deduction of topological information. Automation in Construction, 14(1), 59–70. DOI: 10.1016/J.AUTCON.2004.07.015
  10. Oh, I., & Kwang, H. (2021). Automated recognition of 3D pipelines from point clouds. The Visual Computer, 37, 1385–1400. DOI: 10.1007/s00371-020-01872-y
  11. Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2016). PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. http://arxiv.org/abs/1612.00593
  12. Sager, C., Zschech, P., & Erlangen-Nürnberg Niklas Kühl, F.-A.-U. (2021). labelCloud: A Lightweight Domain-Independent Labeling Tool for 3D Object Detection in Point Clouds. DOI: 10.48550/arXiv.2103.04970
  13. Shin, Y.-M., Tran, C., Shin, W.-Y., & Cao, X. (2021). Edgeless-GNN: Unsupervised Representation Learning for Edgeless Nodes. http://arxiv.org/abs/2104.05225
  14. Son, H., Kim, C., & Turkan, Y. (2015, June 18). Scan-to-BIM - An Overview of the Current State of the Art and a Look Ahead. DOI: 10.22260/ISARC2015/0050
  15. Tang, P., Huber, D., Akinci, B., Lipman, R., & Lytle, A. (2010). Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques. In Automation in Construction (Vol. 19, Issue 7, pp. 829–843). Elsevier B.V. DOI: 10.1016/j.autcon.2010.06.007
  16. Veličković, P., Casanova, A., Liò, P., Cucurull, G., Romero, A., & Bengio, Y. (2017). Graph Attention Networks. 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings. DOI: 10.48550/arxiv.1710.10903
  17. Wang, Z., Sacks, R., & Yeung, T. (2022). Exploring graph neural networks for semantic enrichment: Room type classification. Automation in Construction, 134. DOI: 10.1016/j.autcon.2021.104039
  18. Xie, Y., Li, S., Liu, T., & Cai, Y. (2023). As-built BIM reconstruction of piping systems using PipeNet. Automation in Construction, 147. DOI: 10.1016/J.AUTCON.2022.104735
  19. Yin, C., Wang, B., Gan, V. J. L., Wang, M., & Cheng, J. C. P. (2021). Automated semantic segmentation of industrial point clouds using ResPointNet++. Automation in Construction, 130. DOI: 10.1016/j.autcon.2021.103874
PDF
  • Publication Year: 2023
  • Pages: 887-894

XML
  • Publication Year: 2023

Chapter Information

Chapter Title

Topological Relationship Modelling for Industrial Facility Digitisation Using Graph Neural Networks

Authors

Haritha Jayasinghe, Ioannis Brilakis

DOI

10.36253/979-12-215-0289-3.88

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Bibliographic Information

Book Title

CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Book Subtitle

Managing the Digital Transformation of Construction Industry

Editors

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/979-12-215-0289-3

eISBN (pdf)

979-12-215-0289-3

eISBN (xml)

979-12-215-0257-2

Series Title

Proceedings e report

Series ISSN

2704-601X

Series E-ISSN

2704-5846

80

Fulltext
downloads

95

Views

Export Citation

1,327

Open Access Books

in the Catalogue

2,048

Book Chapters

3,631,242

Fulltext
downloads

4,271

Authors

from 898 Research Institutions

of 65 Nations

64

scientific boards

from 346 Research Institutions

of 43 Nations

1,217

Referees

from 363 Research Institutions

of 38 Nations