Web platforms are increasingly being used to connect communities, including construction industry and academia. Design features of such platforms could impose excessive cognitive workload thereby impacting the use of the platform. This is a crucial consideration especially for new web platforms to secure users’ interest in continuous usage. Understanding users’ cognitive workloads while using web platforms could help make necessary modifications and adapt the features to users’ preferences. Users’ usage patterns can be leveraged to predict the needs of users. Hence, the pattern of cognitive demand that users experience can be used to predict the cognitive load of web platform users. This could provide insights, generate feedback, and identify areas of modification that are critical for sustaining acceptability of web platforms. Using recurrent neural network, this study adopts electroencephalogram (EEG) data as a physiological measure of brain activity to predict brain signals (cognitive load) of users while interacting with a web platform designed to connect industry and academia for future workforce development. This paper presents a Long Short-Term Memory (LSTM) based approach to develop a model for predicting users’ cognitive load via EEG signals. Nineteen (19) potential end-users of the proposed web platform were recruited as participants in this study. The participants interacted with the web-platform in a real case scenario and their brain signals were captured using a five-channel EEG device. The validity of the proposed method was evaluated using root mean square error (RMSE), coefficient of determination (R2), and comparison of the predicted and actual EEG signals and mental workload. The results revealed the reliability of the model and provided a suitable method for predicting users brain signals while using web platforms. This could be leveraged to understand users’ cognitive demand which could provide insights for web platform improvements to engender users’ continuous usage
Virginia Tech/Myers Lawson School of Construction, United States
Virginia Tech/Myers Lawson School of Construction, United States - ORCID: 0000-0001-9145-4865
Virginia Tech/Myers Lawson School of Construction, United States - ORCID: 0000-0002-9065-4766
Virginia Tech, United States - ORCID: 0000-0003-3849-2947
Titolo del capitolo
Prediction of Cognitive Load during Industry-Academia Collaboration via a Web Platform
Autori
Anthony Yusuf, Abiola Akanmu, Adedeji Afolabi, Homero Murzi
DOI
10.36253/979-12-215-0289-3.06
Opera sottoposta a peer review
Anno di pubblicazione
2023
Copyright
© 2023 Author(s)
Licenza d'uso
Licenza dei metadati
Titolo del libro
CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality
Sottotitolo del libro
Managing the Digital Transformation of Construction Industry
Curatori
Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi
Opera sottoposta a peer review
Anno di pubblicazione
2023
Copyright
© 2023 Author(s)
Licenza d'uso
Licenza dei metadati
Editore
Firenze University Press
DOI
10.36253/979-12-215-0289-3
eISBN (pdf)
979-12-215-0289-3
eISBN (xml)
979-12-215-0257-2
Collana
Proceedings e report
ISSN della collana
2704-601X
e-ISSN della collana
2704-5846