The Corona Disaster increased the demand for information on the degree of human crowding, as it was essential to balance avoiding restricting behavior and reducing the risk of crowding. Although there are many technologies for detecting people using monitoring cameras, the number of cameras installed in a wide area is costly, and coverage is limited. In this study, we propose a method to qualitatively visualize the distribution of people by using images captured by a moving omnidirectional camera from the viewpoint of facility management during regular security patrols. Omnidirectional images are used for both 3D modeling of the target space based on SfM (structure from motion) and person detection/tracking by machine learning. The distribution of people is visualized qualitatively by obtaining the positions of the extracted people on the 3D model of the site and mapping them. The parallel software processing of visitor observation and mapping is expected to be highly cost-effective in terms of implementation and operation. On the other hand, although there are time deviations in the mapping depending on the location, the visualization and the updated time show their usefulness in understanding the distribution of congestion
Kansai University, Japan
Kansai University, Japan
Kansai University, Japan - ORCID: 0000-0001-8317-3123
Titolo del capitolo
Localizing and Visualizing the Degree of People Crowding with an Omnidirectional Camera by Different Times
Autori
Tomu Muraoka, Satoshi Kubota, Yoshihiro Yasumuro
DOI
10.36253/979-12-215-0289-3.65
Opera sottoposta a peer review
Anno di pubblicazione
2023
Copyright
© 2023 Author(s)
Licenza d'uso
Licenza dei metadati
Titolo del libro
CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality
Sottotitolo del libro
Managing the Digital Transformation of Construction Industry
Curatori
Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi
Opera sottoposta a peer review
Anno di pubblicazione
2023
Copyright
© 2023 Author(s)
Licenza d'uso
Licenza dei metadati
Editore
Firenze University Press
DOI
10.36253/979-12-215-0289-3
eISBN (pdf)
979-12-215-0289-3
eISBN (xml)
979-12-215-0257-2
Collana
Proceedings e report
ISSN della collana
2704-601X
e-ISSN della collana
2704-5846