Contenuto in:
Capitolo

Improving BIM Authoring Process Reproducibility with Enhanced BIM Logging

  • Suhyung Jang
  • Ghang Lee

This paper presents an enhanced BIM logger designed to capture both geometry and attribute changes of building element geometries, thereby offering a transparent source of representation of the BIM authoring process. The authors developed the logger and reproduction algorithm using the Revit C# API based on the analysis of information required to define building elements and associated attributes. The enhanced BIM log was evaluated through a case study of Villa Savoye designed by Le Corbusier. Despite negligible discrepancies, the results show that the enhanced BIM log can accurately represent the BIM authoring process capturing and reproducing 92.45% of the building elements from the original BIM model. Future research can focus on expanding the scope of logging and probing the potential of automating the BIM authoring process using these enhanced BIM logs

  • Keywords:
  • Building information modeling (BIM),
  • BIM log mining,
  • BIM authoring software,
  • Custom BIM log,
  • Authoring process reproducibility,
+ Mostra di più

Suhyung Jang

Yonsei University, Korea (the Republic of)

Ghang Lee

Yonsei University, Korea (the Republic of) - ORCID: 0000-0002-3522-2733

  1. Aalst, W. van der, Adriansyah, A., Medeiros, A. K. A. de, Arcieri, F., Baier, T., Blickle, T., Bose, J. C., Brand, P. van den, Brandtjen, R., & Buijs, J. (2011). Process mining manifesto. International Conference on Business Process Management, 169–194.
  2. Autodesk. (2022). About Journal Files. Autodesk REVIT 2022 Help. https://help.autodesk.com/view/RVT/2022/ENU/?guid=GUID-477C6854-2724-4B5D-8B95-9657B636C48D
  3. Bose, R. J. C., Mans, R. S., & van der Aalst, W. M. (2013). Wanna improve process mining results? 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 127–134.
  4. Forcael, E., Martinez-Rocamora, A., Sepulveda-Morales, J., Garcia-Alvarado, R., Nope-Bernal, A., & Leighton, F. (2020). Behavior and Performance of BIM Users in a Collaborative Work Environment. Applied Sciences-Basel, 10(6), 2199. DOI: 10.3390/app10062199
  5. Gao, W., Wu, C., Huang, W., Lin, B., & Su, X. (2021). A data structure for studying 3D modeling design behavior based on event logs. In Automation in Construction (Vol. 132). DOI: 10.1016/j.autcon.2021.103967
  6. Jang, S., Lee, G., Shin, S., & Roh, H. (2023). Lexicon-based content analysis of BIM logs for diverse BIM log mining use cases. Advanced Engineering Informatics, 57, 102079. DOI: 10.1016/j.aei.2023.102079
  7. Jang, S., Shin, S., & Lee, G. (2021). Logging Modeling Events to Enhance the Reproducibility of a Modeling Process. ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, 38, 256–263.
  8. Kouhestani, S., & Nik-Bakht, M. (2020). IFC-based process mining for design authoring. In Automation in Construction (Vol. 112, p. 103069). DOI: 10.1016/j.autcon.2019.103069
  9. Lin, J.-R., & Zhou, Y.-C. (2020). Semantic classification and hash code accelerated detection of design changes in BIM models. In Automation in Construction (Vol. 115). DOI: 10.1016/j.autcon.2020.103212
  10. Messner, J., Anumba, C., Dubler, C., Goodman, S., Kasprzak, C., Kreider, R., Leicht, R., Saluja, C., & Zikic, N. (2019). BIM Project Execution Planning Guide (v. 2.2). Computer Integrated Construction Research Program, Pennsylvania State University. https://openlibrary-repo.ecampusontario.ca/jspui/handle/123456789/768
  11. Pan, Y., & Zhang, L. (2020). BIM log mining: Learning and predicting design commands. Automation in Construction, 112, 103107. DOI: 10.1016/j.autcon.2020.103107
  12. Pan, Y., & Zhang, L. (2021). A BIM-data mining integrated digital twin framework for advanced project management. In Automation in Construction (Vol. 124). DOI: 10.1016/j.autcon.2021.103564
  13. Sacks, R., Eastman, C., Lee, G., & Teicholz, P. (2018). BIM handbook: A guide to building information modeling for owners, designers, engineers, contractors, and facility managers. John Wiley & Sons.
  14. Shin, S. (2023). A BIM object-based BIM modeling productivity measurement method using BIM log mining. Yonsei University.
  15. Shin, S., Jang, S., Roh, H., & Lee, G. (2022). A Critical Review of Measuring the Modeling Productivity of Building Information Modeling. Proceedings of the 19th International Conference on Computing in Civil & Building Engineering (ICCCBE), Capetown, South Africa. DOI: 10.1007/978-3-031-35399-4_33
  16. Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs. Information Systems, 64, 132–150.
  17. Yarmohammadi, S., & Castro-Lacouture, D. (2018). Automated performance measurement for 3D building modeling decisions. In Automation in Construction (Vol. 93, pp. 91–111). DOI: 10.1016/j.autcon.2018.05.011
  18. Yarmohammadi, S., Pourabolghasem, R., & Castro-Lacouture, D. (2017). Mining implicit 3D modeling patterns from unstructured temporal BIM log text data. Automation in Construction, 81, 17–24. DOI: 10.1016/j.autcon.2017.04.012
  19. Zhang, L., & Ashuri, B. (2018). BIM log mining: Discovering social networks. Automation in Construction, 91, 31–43. DOI: 10.1016/j.autcon.2018.03.009
PDF
  • Anno di pubblicazione: 2023
  • Pagine: 508-514

XML
  • Anno di pubblicazione: 2023

Informazioni sul capitolo

Titolo del capitolo

Improving BIM Authoring Process Reproducibility with Enhanced BIM Logging

Autori

Suhyung Jang, Ghang Lee

DOI

10.36253/979-12-215-0289-3.49

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY-NC 4.0

Licenza dei metadati

CC0 1.0

Informazioni bibliografiche

Titolo del libro

CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Sottotitolo del libro

Managing the Digital Transformation of Construction Industry

Curatori

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY-NC 4.0

Licenza dei metadati

CC0 1.0

Editore

Firenze University Press

DOI

10.36253/979-12-215-0289-3

eISBN (pdf)

979-12-215-0289-3

eISBN (xml)

979-12-215-0257-2

Collana

Proceedings e report

ISSN della collana

2704-601X

e-ISSN della collana

2704-5846

262

Download dei libri

151

Visualizzazioni

Salva la citazione

1.383

Libri in accesso aperto

in catalogo

2.567

Capitoli di Libri

4.133.292

Download dei libri

4.947

Autori

da 1047 Istituzioni e centri di ricerca

di 66 Nazioni

69

scientific boards

da 368 Istituzioni e centri di ricerca

di 43 Nazioni

1.300

I referee

da 393 Istituzioni e centri di ricerca

di 38 Nazioni