Exoskeletons are increasingly being recognized as ergonomic solutions for work-related musculoskeletal disorders in the construction industry. However, users of active back-support exoskeletons are susceptible to various physical and psychological risks, which could be exoskeleton type-or task-dependent. A test bed is needed to enable deployment and assessment of risks associated with exoskeleton-use for construction tasks. This study aims to develop a human-in-the-loop digital twin framework for assessing ergonomic risks associated with the use of active back-support exoskeletons for construction work. A literature review was conducted to identify risks associated with exoskeletons and the technologies for quantifying the risks. This informed the development of a system architecture describing the enabling technologies and their roles in assessing risks associated with active back-support exoskeletons. Semi-structured interviews were conducted to identify construction tasks that are most suitable for active back-support exoskeletons. Based on the identified tasks, a laboratory experiment was conducted to quantify the risks associated with the use of a commercially available active back-support exoskeleton for carpentry framing tasks. The efficacy of the digital twin framework is demonstrated with an example of the classification of exertion levels due to exoskeleton-use using a 1D-convolutional neural network. The study showcases the potential of digital twins for comprehensive ergonomic assessment, enabling stakeholders to proactively address ergonomic risks and optimize the use of exoskeletons in the construction industry. The framework demonstrates the significance of evidence-based decision-making in enhancing workforce health and safety
Virginia Tech/Myers Lawson School of Construction, United States - ORCID: 0000-0001-9145-4865
Virginia Tech/Myers Lawson School of Construction, United States - ORCID: 0000-0002-9065-4766
Virginia Tech/Myers Lawson School of Construction, United States - ORCID: 0009-0002-5235-1307
Titolo del capitolo
Human-in-the-Loop Digital Twin Framework for Assessing Ergonomic Implications of Exoskeletons
Autori
Abiola Akanmu, Adedeji Afolabi, Akinwale Okunola
DOI
10.36253/979-12-215-0289-3.121
Opera sottoposta a peer review
Anno di pubblicazione
2023
Copyright
© 2023 Author(s)
Licenza d'uso
Licenza dei metadati
Titolo del libro
CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality
Sottotitolo del libro
Managing the Digital Transformation of Construction Industry
Curatori
Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi
Opera sottoposta a peer review
Anno di pubblicazione
2023
Copyright
© 2023 Author(s)
Licenza d'uso
Licenza dei metadati
Editore
Firenze University Press
DOI
10.36253/979-12-215-0289-3
eISBN (pdf)
979-12-215-0289-3
eISBN (xml)
979-12-215-0257-2
Collana
Proceedings e report
ISSN della collana
2704-601X
e-ISSN della collana
2704-5846