Contained in:
Book Chapter

Human-in-the-Loop Digital Twin Framework for Assessing Ergonomic Implications of Exoskeletons

  • Abiola Akanmu
  • Adedeji Afolabi
  • Akinwale Okunola

Exoskeletons are increasingly being recognized as ergonomic solutions for work-related musculoskeletal disorders in the construction industry. However, users of active back-support exoskeletons are susceptible to various physical and psychological risks, which could be exoskeleton type-or task-dependent. A test bed is needed to enable deployment and assessment of risks associated with exoskeleton-use for construction tasks. This study aims to develop a human-in-the-loop digital twin framework for assessing ergonomic risks associated with the use of active back-support exoskeletons for construction work. A literature review was conducted to identify risks associated with exoskeletons and the technologies for quantifying the risks. This informed the development of a system architecture describing the enabling technologies and their roles in assessing risks associated with active back-support exoskeletons. Semi-structured interviews were conducted to identify construction tasks that are most suitable for active back-support exoskeletons. Based on the identified tasks, a laboratory experiment was conducted to quantify the risks associated with the use of a commercially available active back-support exoskeleton for carpentry framing tasks. The efficacy of the digital twin framework is demonstrated with an example of the classification of exertion levels due to exoskeleton-use using a 1D-convolutional neural network. The study showcases the potential of digital twins for comprehensive ergonomic assessment, enabling stakeholders to proactively address ergonomic risks and optimize the use of exoskeletons in the construction industry. The framework demonstrates the significance of evidence-based decision-making in enhancing workforce health and safety

  • Keywords:
  • Digital twin,
  • ergonomics,
  • exertion,
  • exoskeletons,
  • risk assessment,
  • sensing technologies,
  • work-related musculoskeletal disorders,
+ Show More

Abiola Akanmu

Virginia Tech/Myers Lawson School of Construction, United States - ORCID: 0000-0001-9145-4865

Adedeji Afolabi

Virginia Tech/Myers Lawson School of Construction, United States - ORCID: 0000-0002-9065-4766

Akinwale Okunola

Virginia Tech/Myers Lawson School of Construction, United States - ORCID: 0009-0002-5235-1307

  1. Adu, P. (2019). A step-by-step guide to qualitative data coding. Routledge.
  2. Akanmu, A. A., Olayiwola, J., Ogunseiju, O., & McFeeters, D. (2020). Cyber-physical postural training system for construction workers. Automation in Construction, 117. DOI: 10.1016/j.autcon.2020.103272
  3. Alabdulkarim, S., Kim, S., & Nussbaum, M. A. (2019). Effects of exoskeleton design and precision requirements on physical demands and quality in a simulated overhead drilling task. Applied Ergonomics, 80, 136-145. DOI: 10.1016/j.apergo.2019.05.014
  4. Albert, J. A., Herdick, A., Brahms, C. M., Granacher, U., & Arnrich, B. (2021). Using Machine Learning to Predict Perceived Exertion During Resistance Training With Wearable Heart Rate and Movement Sensors. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). DOI: 10.1109/BIBM52615.2021.9669577.
  5. Alemi, M. M., Madinei, S., Kim, S., Srinivasan, D., & Nussbaum, M. A. (2020). Effects of Two Passive Back-Support Exoskeletons on Muscle Activity, Energy Expenditure, and Subjective Assessments During Repetitive Lifting. Hum Factors, 62(3), 458-474. DOI: 10.1177/0018720819897669
  6. Alzahab, N. A., Apollonio, L., Di Iorio, A., Alshalak, M., Iarlori, S., Ferracuti, F., Monteriu, A., & Porcaro, C. (2021). Hybrid Deep Learning (hDL)-Based Brain-Computer Interface (BCI) Systems: A Systematic Review. Brain Sciences, 11(1), 75.
  7. Antwi-Afari, M. F., Anwer, S., Umer, W., Mi, H. Y., Yu, Y. T., Moon, S., & Hossain, U. (2023). Machine learning-based identification and classification of physical fatigue levels: A novel method based on a wearable insole device. International Journal of Industrial Ergonomics, 93. DOI: 10.1016/j.ergon.2022.103404
  8. Baltrusch, S. J., Houdijk, H., van Dieen, J. H., & de Kruif, J. T. C. M. (2021). Passive Trunk Exoskeleton Acceptability and Effects on Self-efficacy in Employees with Low-Back Pain: A Mixed Method Approach. Journal of Occupational Rehabilitation, 31(1), 129-141. DOI: 10.1007/s10926-020-09891-1
  9. Bangaru, S. S., Wang, C., Busam, S. A., & Aghazadeh, F. (2021). ANN-based automated scaffold builder activity recognition through wearable EMG and IMU sensors. Automation in Construction, 126, 103653. DOI: 10.1016/j.autcon.2021.103653.
  10. BLS. (2023). IIF Databases : U.S. Bureau of Labor Statistics. https://www.bls.gov/iif/data.htm.
  11. Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and science in sports and exercise, 14(5), 377-381. DOI: 10.1249/00005768-198205000-00012
  12. Chowdhury, A. K., Tjondronegoro, D., Chandran, V., Zhang, J., & Trost, S. G. (2019). Prediction of relative physical activity intensity using multimodal sensing of physiological data. Sensors, 19(20), 4509. DOI: 10.3390/s19204509.
  13. Cumplido-Trasmonte, C., Barquin-Santos, E., Garces-Castellote, E., Gor-Garcia-Fogeda, M. D., Plaza-Flores, A., Hernandez-Melero, M., Gutierrez-Ayala, A., Cano-de-la-Cuerda, R., Lopez-Moron, A. L., & Garcia-Armada, E. (2023). Safety and usability of the MAK exoskeleton in patients with stroke. Physiotherapy Research International. DOI: 10.1002/pri.2038
  14. de Looze, M. P., Bosch, T., Krause, F., Stadler, K. S., & O'Sullivan, L. W. (2016). Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics, 59(5), 671-681. DOI: 10.1080/00140139.2015.1081988
  15. Delgado, A. D., Escalon, M. X., Bryce, T. N., Weinrauch, W., Suarez, S. J., & Kozlowski, A. J. (2020). Safety and feasibility of exoskeleton-assisted walking during acute/sub-acute SCI in an inpatient rehabilitation facility: A single-group preliminary study. J Spinal Cord Med, 43(5), 657-666. DOI: 10.1080/10790268.2019.1671076
  16. Fox, S., Aranko, O., Heilala, J., & Vahala, P. (2020). Exoskeletons Comprehensive, comparative and critical analyses of their potential to improve manufacturing performance. Journal of Manufacturing Technology Management, 31(6), 1261-1280. DOI: 10.1108/Jmtm-01-2019-0023
  17. Gonsalves, N., Akanmu, A., Gao, X. H., Agee, P., & Shojaei, A. (2023). Industry Perception of the Suitability of Wearable Robot for Construction Work. Journal of Construction Engineering and Management, 149(5). DOI: 10.1061/JCEMD4.COENG-12762
  18. Gonsalves, N. J., Ogunseiju, O. R., Akanmu, A. A., & Nnaji, C. A. (2021). Assessment of a Passive Wearable Robot for Reducing Low Back Disorders during Rebar Work. Journal of Information Technology in Construction, 26, 936-952. DOI: 10.36680/j.itcon.2021.050
  19. Greco, A., Caterino, M., Fera, M., & Gerbino, S. (2020). Digital Twin for Monitoring Ergonomics during Manufacturing Production. Applied Sciences-Basel, 10(21). DOI: 10.3390/app10217758
  20. Howard, J., Murashov, V. V., Lowe, B. D., & Lu, M. L. (2020). Industrial exoskeletons: Need for intervention effectiveness research. American Journal of Industrial Medicine, 63(3), 201-208. DOI: 10.1002/ajim.23080
  21. Karim, F., Majumdar, S., & Darabi, H. (2019). Insights into LSTM fully convolutional networks for time series classification. Ieee Access, 7, 67718-67725. DOI: 10.1109/ACCESS.2019.2916828
  22. Kim, S., Moore, A., Srinivasan, D., Akanmu, A., Barr, A., Harris-Adamson, C., Rempel, D. M., & Nussbaum, M. A. (2019). Potential of Exoskeleton Technologies to Enhance Safety, Health, and Performance in Construction: Industry Perspectives and Future Research Directions. Iise Transactions on Occupational Ergonomics & Human Factors, 7(3-4), 185-191. DOI: 10.1080/24725838.2018.1561557
  23. Locklin, A., Jung, T., Jazdi, N., Ruppert, T., & Weyrich, M. (2021). Architecture of a Human-Digital Twin as Common Interface for Operator 4.0 Applications. Procedia CIRP, 104, 458–463. DOI: 10.1016/j.procir.2021.11.077.
  24. Mahmud, D., Bennett, S. T., Zhu, Z. H., Adamczyk, P. G., Wehner, M., Veeramani, D., & Dai, F. (2022). Identifying Facilitators, Barriers, and Potential Solutions of Adopting Exoskeletons and Exosuits in Construction Workplaces. Sensors, 22(24). DOI: 10.3390/s22249987
  25. Man, S. S., Nordin, M., Cheng, M. C., Fan, S. M., Lee, S. Y., Wong, W. S., & So, B. C. L. (2022). Effects of passive exoskeleton on trunk and gluteal muscle activity, spinal and hip kinematics and perceived exertion for physiotherapists in a simulated chair transfer task: A feasibility study. International Journal of Industrial Ergonomics, 90, 103323. DOI: 10.1016/j.ergon.2022.10332
  26. Massardi, S., Pinto-Fernandez, D., Babic, J., Dezman, M., Trost, A., Grosu, V., Lefeber, D., Rodriguez, C., Bessler, J., Schaake, L., Prange-Lasonder, G., Veneman, J. F., & Torricelli, D. (2023). Relevance of hazards in exoskeleton applications: a survey-based enquiry. J Neuroeng Rehabil, 20(1), 68. DOI: 10.1186/s12984-023-01191-y.
  27. Moyon, A., Poirson, E., & Petiot, J. F. (2018). Experimental study of the physical impact of a passive exoskeleton on manual sanding operations. 28th Cirp Design Conference 2018, 70, 284-289. DOI: 10.1016/j.procir.2018.04.028.
  28. Ogunseiju, O., Olayiwola, J., Akanmu, A., & Olatunji, O. A. (2022). Evaluation of postural-assist exoskeleton for manual material handling. Engineering Construction and Architectural Management, 29(3), 1358-1375. DOI: 10.1108/Ecam-07-2020-0491
  29. Ogunseiju, O., Olayiwola, J., Akanmu, A. A., & Nnaji, C. (2021). Digital twin-driven framework for improving self-management of ergonomic risks. Smart and Sustainable Built Environment, 10(3), 403-419. DOI: 10.1108/Sasbe-03-2021-0035.
  30. Omoniyi, A., Trask, C., Milosavljevic, S., & Thamsuwan, O. (2020). Farmers' perceptions of exoskeleton use on farms: Finding the right tool for the work(er). International Journal of Industrial Ergonomics, 80. DOI: 10.1016/j.ergon.2020.103036.
  31. Picchiotti, M. T., Weston, E. B., Knapik, G. G., Dufour, J. S., & Marras, W. S. (2019). Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine. Applied Ergonomics, 75, 1-7. DOI: 10.1016/j.apergo.2018.09.006.
  32. Sharotry, A., Jimenez, J. A., Mediavilla, F. A. M., Wierschem, D., Koldenhoven, R. M., & Valles, D. (2022). Manufacturing Operator Ergonomics: A Conceptual Digital Twin Approach to Detect Biomechanical Fatigue. Ieee Access, 10, 12774-12791. DOI: 10.1109/Access.2022.3145984.
  33. Sharotry, A., Jimenez, J. A., Wierschem, D., Mediavilla, F. A. M., Koldenhoven, R. M., Valles, D., Koutitas, G., & Aslan, S. (2020). A Digital Twin Framework for Real-Time Analysis and Feedback of Repetitive Work in the Manual Material Handling Industry. 2020 Winter Simulation Conference (Wsc), 2637-2648. DOI: 10.1109/Wsc48552.2020.9384043.
  34. Siedl, S. M., Wolf, M., & Mara, M. (2021). Exoskeletons in the Supermarket: Influences of Comfort, Strain Relief and Task-Technology Fit on Retail Workers' Post-Trial Intention to Use. Hri '21: Companion of the 2021 Acm/Ieee International Conference on Human-Robot Interaction, 397-401. DOI: 10.1145/3434074.3447200.
  35. Sowjanya, A. M., & Mrudula, O. (2023). Effective treatment of imbalanced datasets in health care using modified SMOTE coupled with stacked deep learning algorithms. Applied Nanoscience, 13(3), 1829-1840. DOI: 10.1007/s13204-021-02063-4.
  36. Theurel, J., Desbrosses, K., Roux, T., & Savescu, A. (2018). Physiological consequences of using an upper limb exoskeleton during manual handling tasks. Applied Ergonomics, 67, 211-217. DOI: 10.1016/j.apergo.2017.10.008.
  37. Upasani, S., Franco, R., Niewolny, K., & Srinivasan, D. (2019). The Potential for Exoskeletons to Improve Health and Safety in Agriculture-Perspectives from Service Providers. Iise Transactions on Occupational Ergonomics & Human Factors, 7(3-4), 222-229. DOI: 10.1080/24725838.2019.1575930.
  38. Xiong, W. Y., Xu, X. A., Chen, L., & Yang, J. (2022). Sound-Based Construction Activity Monitoring with Deep Learning. Buildings, 12(11). DOI: 10.3390/buildings12111947.
  39. Zhang, N., Bahsoon, R., Tziritas, N., & Theodoropoulos, G. (2022). Explainable Human-in-the-loop Dynamic Data-Driven Digital Twins. ArXiv. DOI: 10.48550/arXiv.2207.09106.
  40. Zhang, Y., Xie, X., Li, H., Zhou, B., Wang, Q., & Shahrour, I. (2022). Subway tunnel damage detection based on in-service train dynamic response, variational mode decomposition, convolutional neural networks and long short-term memory. Automation in Construction, 139, 104293. DOI: 10.1016/j.autcon.2022.104293
PDF
  • Publication Year: 2023
  • Pages: 1233-1244

XML
  • Publication Year: 2023

Chapter Information

Chapter Title

Human-in-the-Loop Digital Twin Framework for Assessing Ergonomic Implications of Exoskeletons

Authors

Abiola Akanmu, Adedeji Afolabi, Akinwale Okunola

DOI

10.36253/979-12-215-0289-3.121

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Bibliographic Information

Book Title

CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Book Subtitle

Managing the Digital Transformation of Construction Industry

Editors

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/979-12-215-0289-3

eISBN (pdf)

979-12-215-0289-3

eISBN (xml)

979-12-215-0257-2

Series Title

Proceedings e report

Series ISSN

2704-601X

Series E-ISSN

2704-5846

264

Fulltext
downloads

120

Views

Export Citation

1,361

Open Access Books

in the Catalogue

2,368

Book Chapters

3,870,371

Fulltext
downloads

4,536

Authors

from 943 Research Institutions

of 66 Nations

67

scientific boards

from 357 Research Institutions

of 43 Nations

1,249

Referees

from 381 Research Institutions

of 38 Nations