Contenuto in:
Capitolo

Extracting Information from Construction Safety Requirements Using Large Language Model

  • Si Tran
  • Nasrullah Khan
  • Emmanuel Charles Kimito
  • Akeem Pedro
  • Mehrtash Soltani
  • Rahat Hussain
  • Taehan Yoo
  • Chansik Park

The construction industry has long been recognized for its complex safety regulations, which are essential to ensure the well-being of on-site employees. However, navigating these regulations and ensuring compliance can be challenging due to the volume and complexity of the documents involved. This study proposes a novel approach to extracting information from construction safety documents utilizing Large Language Models (LLM), called CSQA, to provide real-time, precise answers to queries related to safety regulations. The approach comprises three modules: (1) the construction safety investigation module (CSI) collects safety regulations for building the information needed. By leveraging a collection of safety regulation PDFs, the system follows a process of text extraction, preprocessing, and global indexing for efficient search. (2) The safety condition identification module (SCI) retrieves the CSI database; after that, the LLM, with its extensive training, processes user queries, searches the indexed regulations, and retrieves pertinent information. (3) the safety information delivery (SID) would provide the answer to the user and incorporate a feedback mechanism to further refine system accuracy based on user responses. Preliminary evaluations reveal the system's superior performance over traditional search engines, owing to its ability to grasp query context and nuances. The CSQA presents a promising method for accessing safety regulations, with potential benefits including reduced non-compliance incidents, enhanced worker safety, and streamlined regulatory consultations in construction

  • Keywords:
  • Construction safety document,
  • extraction,
  • LLM,
+ Mostra di più

Si Tran

Chung Ang University, Korea (the Republic of) - ORCID: 0000-0003-0080-751X

Nasrullah Khan

Chung Ang University, Korea (the Republic of)

Emmanuel Charles Kimito

Chung Ang University, Korea (the Republic of)

Akeem Pedro

Chung Ang University, Korea (the Republic of) - ORCID: 0000-0002-7884-5316

Mehrtash Soltani

Chung Ang University, Korea (the Republic of) - ORCID: 0000-0002-5217-2010

Rahat Hussain

Chung Ang University, Korea (the Republic of) - ORCID: 0000-0002-6909-5189

Taehan Yoo

Chung Ang University, Korea (the Republic of) - ORCID: 0009-0008-9739-1867

Chansik Park

Chung Ang University, Korea (the Republic of) - ORCID: 0000-0003-2256-300X

  1. Baker, H., Hallowell, M. R., & Tixier, A. J. P. (2020). Automatically learning construction injury precursors from text. Automation in Construction, 118, 103145. DOI: 10.1016/J.AUTCON.2020.103145
  2. Bao, L., Tran, S. V. T., Nguyen, T. L., Pham, H. C., Lee, D., & Park, C. (2022). Cross-platform virtual reality for real-time construction safety training using immersive web and industry foundation classes. Automation in Construction, 143, 104565. DOI: 10.1016/J.AUTCON.2022.104565
  3. Construction Work | Statistics Korea. (n.d.). Retrieved October 6, 2022, from http://kostat.go.kr/portal/eng/pressReleases/4/5/index.board
  4. Feng, D., & Chen, H. (2021). A small samples training framework for deep Learning-based automatic information extraction: Case study of construction accident news reports analysis. Advanced Engineering Informatics, 47, 101256. DOI: 10.1016/J.AEI.2021.101256
  5. Jeong, H., Shin, & Wonsang. (2023). An Analysis on the Safety Management Level of Domestic Medium Construction Companies and Its Improvement Measures. Korean Journal of Construction Engineering and Management, 24(3), 20–30. DOI: 10.6106/KJCEM.2023.24.3.020
  6. Kang, Jeong, H., Chae, J., & Kang, Y. (2023). Distribution of Occupational Safety and Health Management Costs (OSHMC) by Project Size and Activity Type with the Consideration of Accident Rates. Korean Journal of Construction Engineering and Management, 24(4), 44–51. DOI: 10.6106/KJCEM.2023.24.4.044
  7. OSHA fatality report. (n.d.). Retrieved October 6, 2022, from https://www.osha.gov/stop-falls
  8. Rupasinghe, N. K. A. H., & Panuwatwanich, K. (2021). UNDERSTANDING CONSTRUCTION SITE SAFETY HAZARDS THROUGH OPEN DATA: TEXT MINING APPROACH. ASEAN Engineering Journal, 11(4), 160–178. DOI: 10.11113/AEJ.V11.17871
  9. Tran, S. V.-T., Lee, D., Bao, Q. L., Yoo, T., Khan, M., Jo, J., & Park, C. (2023). A Human Detection Approach for Intrusion in Hazardous Areas Using 4D-BIM-Based Spatial-Temporal Analysis and Computer Vision. Buildings 2023, Vol. 13, Page 2313, 13(9), 2313. DOI: 10.3390/BUILDINGS13092313
  10. Tran, S. V., Bao, L. Q., Nguyen, L. T., & Pedro, A. (2022). Development of Computer Vision and BIM-cloud based Automated Status Updating for Construction Safety Monitoring. Nov 2022. cloud_based_Automated_Status_Updating_for_Construction_Safety_Monitoring
  11. Tran, S. V. T., Khan, N., Lee, D., & Park, C. (2021). A Hazard Identification Approach of Integrating 4D BIM and Accident Case Analysis of Spatial–Temporal Exposure. Sustainability 2021, Vol. 13, Page 2211, 13(4), 2211. DOI: 10.3390/SU13042211
  12. Tran, S. V. T., Nguyen, T. L., Chi, H. L., Lee, D., & Park, C. (2022). Generative planning for construction safety surveillance camera installation in 4D BIM environment. Automation in Construction, 134, 104103. DOI: 10.1016/J.AUTCON.2021.104103
  13. Wu, C., Li, X., Guo, Y., Wang, J., Ren, Z., Wang, M., & Yang, Z. (2022). Natural language processing for smart construction: Current status and future directions. Automation in Construction, 134, 104059. DOI: 10.1016/J.AUTCON.2021.104059
  14. Zhong, B., He, W., Huang, Z., Love, P. E. D., Tang, J., & Luo, H. (2020). A building regulation question answering system: A deep learning methodology. Advanced Engineering Informatics, 46, 101195. DOI: 10.1016/J.AEI.2020.101195
PDF
  • Anno di pubblicazione: 2023
  • Pagine: 761-767

XML
  • Anno di pubblicazione: 2023

Informazioni sul capitolo

Titolo del capitolo

Extracting Information from Construction Safety Requirements Using Large Language Model

Autori

Si Tran, Nasrullah Khan, Emmanuel Charles Kimito, Akeem Pedro, Mehrtash Soltani, Rahat Hussain, Taehan Yoo, Chansik Park

DOI

10.36253/979-12-215-0289-3.76

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY-NC 4.0

Licenza dei metadati

CC0 1.0

Informazioni bibliografiche

Titolo del libro

CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Sottotitolo del libro

Managing the Digital Transformation of Construction Industry

Curatori

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY-NC 4.0

Licenza dei metadati

CC0 1.0

Editore

Firenze University Press

DOI

10.36253/979-12-215-0289-3

eISBN (pdf)

979-12-215-0289-3

eISBN (xml)

979-12-215-0257-2

Collana

Proceedings e report

ISSN della collana

2704-601X

e-ISSN della collana

2704-5846

405

Download dei libri

161

Visualizzazioni

Salva la citazione

1.383

Libri in accesso aperto

in catalogo

2.567

Capitoli di Libri

4.133.292

Download dei libri

4.947

Autori

da 1047 Istituzioni e centri di ricerca

di 66 Nazioni

69

scientific boards

da 368 Istituzioni e centri di ricerca

di 43 Nazioni

1.300

I referee

da 393 Istituzioni e centri di ricerca

di 38 Nazioni