Contenuto in:
Capitolo

Efficient Data Curation Using Active Learning for a Video-Based Fire Detection

  • Keyur Joshi
  • Angelina Aziz
  • Philip Dietrich
  • Markus König

Video-based fire detection is a crucial object detection problem that relies on accurate and reliable data to detect fires. However, collecting and labeling fire-related data can be time-consuming and expensive, making it difficult to obtain sufficient data for training machine learning models. To address this challenge, uncertainty-based active learning techniques can be used to iteratively select the most informative samples for labeling. This can reduce the amount of labeled data needed to achieve high model performance and has the potential to even prune the training data with fewer informative samples. The traditional sampling-based uncertainty estimation methods are computationally expensive. Hence, an efficient prior network-based ensemble distillation State-of-the-Art approach is evaluated on an internal dataset which still requires relatively higher overhead computation making it difficult for production deployment. A biased softmax differencing-based uncertainty approach and a feature-based hard data mining approach are proposed and compared with the distillation approach. The novel approaches are found to have a very low overhead uncertainty estimation time compared to the ensemble distillation approach and traditional sampling techniques. The methods are evaluated in the context of curating the unlabeled pool data and improving the training data. For completeness, the experiments are performed on three different data sizes, and overall, the frame-wise selection strategy is proved to be better than the sequence-wise querying strategy. The Principal Component Analysis (PCA)-based hard data mining outperformed other methods and improved the model performance by 16.33% with AUC2% metric when compared with the random selection of data. The approach even outperformed the main network trained on full data by 7.33%, henceforth improving the training data by using informative 26.39% data. The results indicate that novel data mining provides efficient training and pool data curation

  • Keywords:
  • Uncertainty Estimation,
  • Active Learning,
  • Object Detection,
  • Outlier Detection,
  • Feature-based cluster analysis,
  • Video-based Fire Detection,
+ Mostra di più

Keyur Joshi

Ruhr-University Bochum, Germany

Angelina Aziz

Ruhr-University Bochum, Germany - ORCID: 0000-0001-7853-1395

Philip Dietrich

Bosch Sicherheitssysteme GmbH, Germany

Markus König

Ruhr-University Bochum, Germany - ORCID: 0000-0002-2729-7743

  1. Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on Management of data (pp. 93-104). DOI: 10.1145/342009.335388
  2. Campbell, R. (2018). Fire in Industrial or Manufacturing Properties. Technical report, National Fire Protection Association (NFPA). Retrieved July 24, 2023, from NFPA report website: https://www.nfpa.org/News-and-Research/Data-research-and-tools/Building-and-Life-Safety/Fires-in-US-Industrial-and-Manufacturing-Facilities
  3. Choi, J., Elezi, I., Lee, H.-J., Farabet, C., & Alvarez, J. M. (2021). Active Learning for Deep Object Detection via Probabilistic Modeling. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 10264-10273). DOI: 10.48550/arXiv.2103.16130
  4. Deepshikha, K., Yelleni, S. H., Srijith, P. K., & Mohan, C. K. (2021). Monte Carlo DropBlock for Modelling Uncertainty in Object Detection. In Computing Research Repository (CoRR). DOI: 10.48550/arXiv.2108.03614
  5. Desai, S. V., Chandra, A. L., Guo, W., Ninomiya, S., & Balasubramanian, V. N. (2019, October). An Adaptive Supervision Framework for Active Learning in Object Detection. In Proceedings of the British Machine Vision Conference. https://api.semanticscholar.org/CorpusID:199472921
  6. Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In International conference on machine learning, PMLR (pp. 1050-1059). https://proceedings.mlr.press/v48/gal16.html
  7. Gal, Y., Islam, R., & Ghahramani, Z. (2017). Deep Bayesian Active Learning with Image Data. In International conference on machine learning, PMLR (pp. 1183-1192). DOI: 10.48550/arXiv.1703.02910
  8. Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. DOI: 10.1098/rsta.2015.0202
  9. Kendall, A., & Gal, Y. (2017). What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? Advances in neural information processing systems, 30. DOI: 10.5555/3295222.3295309
  10. Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. Advances in neural information processing systems, 30. https://api.semanticscholar.org/CorpusID:6294674
  11. Malinin, A., & Gales, M. (2018). Predictive Uncertainty Estimation via Prior Networks. Advances in neural information processing systems, 31. DOI: 10.48550/arXiv.1802.10501
  12. Malinin, A., Mlodozeniec, B., & Gales, M. (2019). Ensemble Distribution Distillation. In 8th International Conference on Learning Representations. DOI: 10.48550/arXiv.1905.00076
  13. Manivannan, I. (2020). A Comparative Study of Uncertainty Estimation Methods in Deep Learning Based Classification Models. Technical report, Hochschule Bonn-Rhein-Sieg University of Applied Sciences, Department of Computer Science. DOI: 10.18418/978-3-96043-085-8
  14. Nguyen, V.-L., Shaker, M. H., & Hüllermeier, E. (2022). How to measure uncertainty in uncertainty sampling for active learning. Machine Learning, 111(1), 89-122, DOI: 10.1007/s10994-021-06003-9
  15. Schorn, C., & Gauerhof, L. (2020). FACER: A Universal Framework for Detecting Anomalous Operation of Deep Neural Networks. In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (pp. 1-6). DOI: 10.1109/ITSC45102.2020.9294226
  16. Sousa, M. J., Moutinho, A., & Almeida, M. (2020). Thermal Infrared Sensing for Near Real-Time Data-Driven Fire Detection and Monitoring Systems. Sensors (Basel, Switzerland), 20(23), 6803. DOI: 10.3390/s20236803
  17. Streiner, D. L., & Cairney, J. (2007). What’s under the ROC? An introduction to receiver operating characteristics curves. The Canadian Journal of Psychiatry, 52(2), 121-128. DOI: 10.1177/070674370705200210
  18. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A. (2015). Going Deeper with Convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9). DOI: 10.1109/CVPR.2015.7298594
PDF
  • Anno di pubblicazione: 2023
  • Pagine: 616-624

XML
  • Anno di pubblicazione: 2023

Informazioni sul capitolo

Titolo del capitolo

Efficient Data Curation Using Active Learning for a Video-Based Fire Detection

Autori

Keyur Joshi, Angelina Aziz, Philip Dietrich, Markus König

DOI

10.36253/979-12-215-0289-3.60

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY-NC 4.0

Licenza dei metadati

CC0 1.0

Informazioni bibliografiche

Titolo del libro

CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Sottotitolo del libro

Managing the Digital Transformation of Construction Industry

Curatori

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY-NC 4.0

Licenza dei metadati

CC0 1.0

Editore

Firenze University Press

DOI

10.36253/979-12-215-0289-3

eISBN (pdf)

979-12-215-0289-3

eISBN (xml)

979-12-215-0257-2

Collana

Proceedings e report

ISSN della collana

2704-601X

e-ISSN della collana

2704-5846

212

Download dei libri

200

Visualizzazioni

Salva la citazione

1.412

Libri in accesso aperto

in catalogo

2.691

Capitoli di Libri

4.559.482

Download dei libri

5.066

Autori

da 1079 Istituzioni e centri di ricerca

di 66 Nazioni

72

scientific boards

da 381 Istituzioni e centri di ricerca

di 43 Nazioni

1.312

I referee

da 402 Istituzioni e centri di ricerca

di 38 Nazioni