Contenuto in:
Capitolo

Educational mismatch and productivity: evidence from LEED data on Italian firms

  • Laura Bisio
  • Matteo Lucchese

This study aims at evaluating the impact of educational mismatch onto firm-level productivity for a large set of Italian firms. In particular, over (under)-education refers to situations where individual’s educational attainment is higher (lower) than the education required by the job, thereby producing a surplus (deficit) of education. Based on the integration of the LEED (Linked Employer Employee Database) Istat Statistical Register Asia Occupazione – which provides information on workers’ age, professional qualification and educational attainment – and the Istat Frame-SBS Register, we perform an analysis in the spirit of the ORU (Over, Required and Under Education) model proposed by Kampelmann e Rycx (2012). The dataset is based on a large panel of over 55,000 manufacturing and services firms with more than 20 employees, covering the 2014-2019 period. The empirical strategy is based on a two-step procedure: first, ORU indicators are computed at the worker-level; second, we estimate a firm-level productivity (value added per employee) function where the key variables of interest are the ORU indicators collapsed at the firm-level, taking into account both firm and workers characteristics. The productivity function is estimated by GMM-system by Arellano and Bond (1995) e Blundell and Bond (1988). Main results point out that over/under-education affects productivity growth in both manufacturing and services firms: firm’s productivity rises following a one unit increase in mean years of over-education – with spiking results for medium and high-tech manufacturing firms –, whereas a growth in under-education hampers productivity dynamics in high and medium-high tech manufacturing and knowledge-intensive services firms.

  • Keywords:
  • Educational mismatch,
  • Productivity,
  • Linked Employer-Employee Dataset,
  • GMM-System,
+ Mostra di più

Laura Bisio

ISTAT, Italian National Institute of Statistics, Italy - ORCID: 0000-0003-0922-6359

Matteo Lucchese

ISTAT, Italian National Institute of Statistics, Italy - ORCID: 0000-0001-8331-7393

  1. Arellano, M., and Bond, O. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies, 58(2), pp. 277–297.
  2. Arellano, M., and Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. Journal of Econometrics, 68(1), pp. 29-51.
  3. Blundell, R., and Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), pp. 115-143.
  4. Fanti, L., Guarascio, D., Tubiana, M. (2021). Skill mismatch and the dynamics of Italian companies’ productivity. Applied Economics, 53(59), pp. 6790-6803.
  5. Hansen, L. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50(4), pp. 1029–1054.
  6. Istat (2018). Rapporto sulla Competitività dei settori produttivi. Istat, Roma.
  7. Istat (2022). Rapporto sulla Competitività dei settori produttivi. Istat, Roma.
  8. Istat (2021). Rapporto Annuale sulla situazione del Paese. Istat, Roma.
  9. Kampelmann S., and Rycx F. (2012). The Impact of Educational Mismatch on Labour Productivity. Evidence from Linked Panel Data. Economics of Education Review, 31(6), pp. 918-931.
  10. Mahy, B., Rycx, F., Vermeylen, G. (2015). Educational Mismatch and Firm Productivity: Do Skills, Technology and Uncertainty Matter?. De Economist, 163, pp. 233-262.
  11. Monti, P., and Pellizzari M. (2016). Skill Mismatch and Labour Shortages in the Italian Labour Market. Innocenzo Gasparini Institute for Economic Research Policy Brief, 2.
  12. Montt, G. (2015). The causes and consequences of field-of-study mismatch: An analysis using PIAAC. OECD Social, Employment and Migration Working Papers, 167, OECD Publishing, Paris.
  13. OECD (2016). Skills Matter. Further Results from the Survey of Adult Skills. OECD Publishing, Paris.
  14. OECD (2022). Closing the Italian digital gap: The role of skills, intangibles and policies. OECD Science, Technology and Industry Policy Papers, 126, OECD Publishing, Paris.
PDF
  • Anno di pubblicazione: 2023
  • Pagine: 299-304

XML
  • Anno di pubblicazione: 2023

Informazioni sul capitolo

Titolo del capitolo

Educational mismatch and productivity: evidence from LEED data on Italian firms

Autori

Laura Bisio, Matteo Lucchese

Lingua

English

DOI

10.36253/979-12-215-0106-3.52

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Informazioni bibliografiche

Titolo del libro

ASA 2022 Data-Driven Decision Making

Sottotitolo del libro

Book of short papers

Curatori

Enrico di Bella, Luigi Fabbris, Corrado Lagazio

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Editore

Firenze University Press, Genova University Press

DOI

10.36253/979-12-215-0106-3

eISBN (pdf)

979-12-215-0106-3

eISBN (xml)

979-12-215-0107-0

Collana

Proceedings e report

ISSN della collana

2704-601X

e-ISSN della collana

2704-5846

135

Download dei libri

233

Visualizzazioni

Salva la citazione

1.383

Libri in accesso aperto

in catalogo

2.567

Capitoli di Libri

4.133.292

Download dei libri

4.947

Autori

da 1047 Istituzioni e centri di ricerca

di 66 Nazioni

69

scientific boards

da 368 Istituzioni e centri di ricerca

di 43 Nazioni

1.300

I referee

da 393 Istituzioni e centri di ricerca

di 38 Nazioni