Contenuto in:
Capitolo

Early Visualization Approach to the Generative Architectural Simulation Using Light Analysis Images

  • Bomin Kim
  • Sumin Chae
  • Youngjin Yoo
  • Jin-Kook Lee

This paper presents the potential utility of generative artificial intelligence-based light analysis simulation visualization image in the early phase of architectural planning and design. Facilitating the simulation of a building's performance during the early stages of planning and design presents numerous advantages, such as cost savings and enhanced ease of communication among stakeholders. However, the assessment of design performance is typically conducted during the design development phase or post-design completion. Processing a substantial volume of data based on design alternatives demands considerable time and resources, thus constraining the immediate provision of simulation results. This paper aims to utilize generative AI to produce visualization results of simulations with a predefined level of accuracy, with a specific focus on the architectural aspect rather than the physical and engineering functionalities of the simulation. Consequently, the study employs the following approach: 1) Analyze prominent characteristics and elements within light analysis simulation. 2) Based on this analysis, generate high-quality visualization image data additionally through Building Information Modeling (BIM). 3) Construct a dataset by pairing the generated lighting analysis visualization image with prompts. 4) Utilize the established dataset to create an additional learning model for light analysis visualization images. This study is expected to provide immediate and efficient assistance in design decision-making during the early phases by generating visualization images with high accuracy, reflecting prominent qualitative aspects related to light analysis and processing within the simulation

  • Keywords:
  • Architectural Design,
  • Architectural Visualization,
  • Generative AI,
  • BIM (building information modeling),
  • Fine Tuning Model,
+ Mostra di più

Bomin Kim

Yonsei University, Korea (the Republic of) - ORCID: 0009-0007-2500-3231

Sumin Chae

Yonsei University, Korea (the Republic of)

Youngjin Yoo

Yonsei University, Korea (the Republic of) - ORCID: 0009-0002-5362-328X

Jin-Kook Lee

Yonsei University, Korea (the Republic of) - ORCID: 0000-0002-5179-6550

  1. Atilola, O., Tomko, M., & Linsey, J. S. (2016). The effects of representation on idea generation and design fixation: A study comparing sketches and function trees. Design studies, 42, 110-136, DOI: 10.1016/j.destud.2015.10.005
  2. Chiu, M. L. (1995). Collaborative design in CAAD studios: shared ideas, resources, and representations. In Proceedings of International Conference on CAAD Future (Vol. 95, pp. 749-759)
  3. C.M. Eastman, P. Teicholz, R. Sacks, K. Liston, BIM handbook: a guide to building information modeling for owners, managers, designers, engineers, and contractors, John Wiley & Sons, 2008.
  4. Eastman, C.M. (1999). Building Product Models: Computer Environments, Supporting Design and Construction. (1st ed.). CRC Press: Florida, (Chapter 1), DOI: 10.1201/9781315138671
  5. Greenberg, D. P. (1974). Computer graphics in architecture. Scientific American, 230(5), 98-107.
  6. https://openart.ai/
  7. Kalay, Y. E. (2004). Architecture's New Media: Principles, theories and methods of computer-aided design. Cambridge, Massachusetts: The MIT Press, DOI: 10.1007/s00004-005-0015-1
  8. Kim, J., Song, J., & Lee, J. K. (2019, January). Approach to auto-recognition of design elements for the intelligent management of interior pictures. In Proceedings of the 24th International Conference on Computer-Aided Architectural Design Research in Asia: Intelligent and Informed, CAADRIA (pp. 785-794).
  9. Lee, J.K., Lee, S., Kim, Y., & Kim, S. (2023). Augmented virtual reality and 360 spatial visualization for supporting user-engaged design, Journal of Computational Design and Engineering, Volume 10(3), Pages 1047–1059, DOI: 10.1093/jcde/qwad035
  10. Lee, J. K., Lee, J., Jeong, Y. S., Sheward, H., Sanguinetti, P., Abdelmohsen, S., & Eastman, C. M. (2012). Development of space database for automated building design review systems. Automation in Construction, 24, 203-212, DOI: 10.1016/j.autcon.2012.03.002
  11. Mackinsey, 2023, https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier#business-value
  12. Oppenlaender, J., Visuri, A., Paananen, V., Linder, R., & Silvennoinen, J. (2023). Text-to-Image Generation: Perceptions and Realities, DOI: 10.48550/arXiv.2303.13530
PDF
  • Anno di pubblicazione: 2023
  • Pagine: 958-964

XML
  • Anno di pubblicazione: 2023

Informazioni sul capitolo

Titolo del capitolo

Early Visualization Approach to the Generative Architectural Simulation Using Light Analysis Images

Autori

Bomin Kim, Sumin Chae, Youngjin Yoo, Jin-Kook Lee

DOI

10.36253/979-12-215-0289-3.96

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY-NC 4.0

Licenza dei metadati

CC0 1.0

Informazioni bibliografiche

Titolo del libro

CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Sottotitolo del libro

Managing the Digital Transformation of Construction Industry

Curatori

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY-NC 4.0

Licenza dei metadati

CC0 1.0

Editore

Firenze University Press

DOI

10.36253/979-12-215-0289-3

eISBN (pdf)

979-12-215-0289-3

eISBN (xml)

979-12-215-0257-2

Collana

Proceedings e report

ISSN della collana

2704-601X

e-ISSN della collana

2704-5846

168

Download dei libri

170

Visualizzazioni

Salva la citazione

1.410

Libri in accesso aperto

in catalogo

2.682

Capitoli di Libri

4.459.874

Download dei libri

5.064

Autori

da 1080 Istituzioni e centri di ricerca

di 66 Nazioni

71

scientific boards

da 381 Istituzioni e centri di ricerca

di 43 Nazioni

1.311

I referee

da 402 Istituzioni e centri di ricerca

di 38 Nazioni