Contenuto in:
Capitolo

Early Detection and Reconstruction of Abnormal Data Using Hybrid VAE-LSTM Framework

  • Fangli Hou
  • Jun Ma
  • Jack C. P. Cheng
  • Helen H.L. Kwok

Early failure detection and abnormal data reconstruction in sensor data provided by building ventilation control systems are critical for public health. Early detection of abnormal data can help prevent failures in crucial components of ventilation systems, which can result in a variety of issues, from energy wastage to catastrophic outcomes. However, conventional fault detection models ignore valuable features of dynamic fluctuations in indoor air quality (IAQ) measurements and early warning signals of faulty sensor data. This study introduces a hybrid framework for early failure detection and abnormal data reconstruction applying variance analysis and variational autoencoders (VAE) coupled with the long short-term memory network (VAE-LSTM). The periodicity and stable fluctuation of IAQ data are exploited by variance analysis to detect unusual variations before failure occurs. The IAQ dataset which is corrupted by introducing complete failure, bias failure and precision degradation fault is then used to verify the feasibility of the VAE-LSTM model. The results of variance analysis reveal that unusual behavior of the data can be detected as early as 12 hours before failure occurs. The reconstruction performance of the developed method is shown to be superior to other methods under different abnormal data scenarios

  • Keywords:
  • Early failure detection,
  • Abnormal data reconstruction,
  • Variational autoencoder (VAE),
  • Long short-term memory network (LSTM),
  • Sustainable IAQ management,
+ Mostra di più

Fangli Hou

The Hong Kong University of Science and Technology, Hong Kong - ORCID: 0000-0002-5344-2852

Jun Ma

The University of Hong Kong, Hong Kong - ORCID: 0000-0001-9441-0083

Jack C. P. Cheng

University of Hong KongThe Hong Kong University of Science and Technology, Hong Kong - ORCID: 0000-0002-1722-2617

Helen H.L. Kwok

The Hong Kong University of Science and Technology, Hong Kong - ORCID: 0000-0002-7179-9281

  1. Ali, A., & Dağtekin, R. (2008). Early warning signals of the 2000/2001 Turkish financial crisis. International Journal of Emerging and Transition Economies, 1(2), 191-218.
  2. Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers. Paper presented at the Proceedings of the 2000 ACM SIGMOD international conference on Management of data.
  3. Bu, J., Liu, Y., Zhang, S., Meng, W., Liu, Q., Zhu, X., & Pei, D. (2018). Rapid deployment of anomaly detection models for large number of emerging kpi streams. Paper presented at the 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC).
  4. Cao, V. L., Nicolau, M., & McDermott, J. (2016). One-class classification for anomaly detection with kernel density estimation and genetic programming. Paper presented at the Genetic Programming: 19th European Conference, EuroGP 2016, Porto, Portugal, March 30-April 1, 2016, Proceedings 19.
  5. Drake, J. M., & Griffen, B. D. (2010). Early warning signals of extinction in deteriorating environments. Nature, 467(7314), 456-459.
  6. EPA. (2009). Indoor Air Quality Tools for Schools. Retrieved from https://www.epa.gov/iaq-schools/indoor-air-quality-tools-schools-action-kit
  7. Erfani, S. M., Rajasegarar, S., Karunasekera, S., & Leckie, C. (2016). High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognition, 58, 121-134.
  8. Hussain, S. N., Abd Aziz, A., Hossen, M. J., Ab Aziz, N. A., Murthy, G. R., & Mustakim, F. B. (2022). A novel framework based on cnn-lstm neural network for prediction of missing values in electricity consumption time-series datasets. Journal of Information Processing Systems, 18(1), 115-129.
  9. Kasam, A. A., Lee, B. D., & Paredis, C. J. (2014). Statistical methods for interpolating missing meteorological data for use in building simulation. Paper presented at the Building Simulation.
  10. Kim, M., Liu, H., Kim, J. T., & Yoo, C. (2014). Evaluation of passenger health risk assessment of sustainable indoor air quality monitoring in metro systems based on a non-Gaussian dynamic sensor validation method. Journal of hazardous materials, 278, 124-133.
  11. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  12. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
  13. Lee, W.-Y., House, J. M., Park, C., & Kelly, G. E. (1996). Fault diagnosis of an air-handling unit using artificial neural networks. Transactions-American society of heating refrigerating and air conditioning engineers, 102, 540-549.
  14. Li, D., Zhou, Y., Hu, G., & Spanos, C. J. (2016). Fault detection and diagnosis for building cooling system with a tree-structured learning method. Energy and buildings, 127, 540-551.
  15. Li, X., Peng, L., Yao, X., Cui, S., Hu, Y., You, C., & Chi, T. (2017). Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Environmental pollution, 231, 997-1004.
  16. Lu, Y.-C., Shen, C.-H., & Wei, Y.-C. (2013). Revisiting early warning signals of corporate credit default using linguistic analysis. Pacific-Basin Finance Journal, 24, 1-21.
  17. Ma, J., Cheng, J. C., Jiang, F., Chen, W., Wang, M., & Zhai, C. (2020). A bi-directional missing data imputation scheme based on LSTM and transfer learning for building energy data. Energy and buildings, 216, 109941.
  18. Mesa-Jiménez, J. J., Stokes, L., Yang, Q., & Livina, V. (2021). Early warning signals of failures in building management systems. International Journal of Metrology and Quality Engineering, 12, 11.
  19. Ouyang, T., Zha, X., & Qin, L. (2017). A combined multivariate model for wind power prediction. Energy conversion and management, 144, 361-373.
  20. Qing, X., & Niu, Y. (2018). Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy, 148, 461-468.
  21. Rogers, B. M., Solvik, K., Hogg, E. H., Ju, J., Masek, J. G., Michaelian, M., . . . Goetz, S. J. (2018). Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. Global change biology, 24(6), 2284-2304.
  22. Su, Y., & Kuo, C.-C. J. (2019). On extended long short-term memory and dependent bidirectional recurrent neural network. Neurocomputing, 356, 151-161.
  23. Szabados, M., Kakucs, R., Páldy, A., Kotlík, B., Kazmarová, H., Dongiovanni, A., . . . Kukec, A. (2022). Association of parent-reported health symptoms with indoor air quality in primary school buildings–the InAirQ study. Building and Environment, 221, 109339.
  24. Wang, H., Feng, D., & Liu, K. (2021). Fault detection and diagnosis for multiple faults of VAV terminals using self-adaptive model and layered random forest. Building and Environment, 193, 107667.
  25. Wen, J., & Gao, H. (2018). Degradation assessment for the ball screw with variational autoencoder and kernel density estimation. Advances in Mechanical Engineering, 10(9), 1687814018797261.
  26. Yan, K., Zhong, C., Ji, Z., & Huang, J. (2018). Semi-supervised learning for early detection and diagnosis of various air handling unit faults. Energy and buildings, 181, 75-83. DOI: 10.1016/j.enbuild.2018.10.016
  27. Yu, Y., Woradechjumroen, D., & Yu, D. (2014). A review of fault detection and diagnosis methodologies on air-handling units. Energy and buildings, 82, 550-562.
  28. Zhao, Y., Li, T., Zhang, X., & Zhang, C. (2019). Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future. Renewable and Sustainable Energy Reviews, 109, 85-101.
PDF
  • Anno di pubblicazione: 2023
  • Pagine: 933-942

XML
  • Anno di pubblicazione: 2023

Informazioni sul capitolo

Titolo del capitolo

Early Detection and Reconstruction of Abnormal Data Using Hybrid VAE-LSTM Framework

Autori

Fangli Hou, Jun Ma, Jack C. P. Cheng, Helen H.L. Kwok

DOI

10.36253/979-12-215-0289-3.93

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY-NC 4.0

Licenza dei metadati

CC0 1.0

Informazioni bibliografiche

Titolo del libro

CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Sottotitolo del libro

Managing the Digital Transformation of Construction Industry

Curatori

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY-NC 4.0

Licenza dei metadati

CC0 1.0

Editore

Firenze University Press

DOI

10.36253/979-12-215-0289-3

eISBN (pdf)

979-12-215-0289-3

eISBN (xml)

979-12-215-0257-2

Collana

Proceedings e report

ISSN della collana

2704-601X

e-ISSN della collana

2704-5846

161

Download dei libri

181

Visualizzazioni

Salva la citazione

1.385

Libri in accesso aperto

in catalogo

2.573

Capitoli di Libri

4.133.292

Download dei libri

4.951

Autori

da 1052 Istituzioni e centri di ricerca

di 66 Nazioni

69

scientific boards

da 370 Istituzioni e centri di ricerca

di 43 Nazioni

1.300

I referee

da 395 Istituzioni e centri di ricerca

di 38 Nazioni