Contained in:
Book Chapter

Adapting BIM-Based AR Positioning Techniques to the Construction Site

  • Khalid Amin
  • Grant Mills
  • Duncan Wilson
  • Karim Farghaly

While Building Information Modelling (BIM) can support the management and visualisation of construction projects, Augmented Reality (AR) holds great promise to enhance interaction with these complex models. The accurate positioning of BIM-AR models in construction sites is critical to ensure that the virtual and real-world environments are correctly aligned. Through a literature review, this paper presents a review of state-of-the-art positioning techniques. It explores the different techniques used to position BIM-AR models and understands the interconnections and differences between them, with an emphasis on their applicability to the construction industry. The review also explores the challenges and limitations of each technique, in terms of the trade-offs between accuracy, computational efficiency, and robustness in varying environments. By providing an overview of positioning techniques in BIM-AR, this paper aims to guide researchers and practitioners in assessing the suitability of these techniques in the context of construction sites. The insights gained from this review may inform the development of efficient BIM-AR platforms that are more aligned with the dynamic and complex nature of construction sites

  • Keywords:
  • BIM,
  • Augmented Reality,
  • Positioning,
+ Show More

Khalid Amin

University College London, United Kingdom - ORCID: 0000-0002-9705-5280

Grant Mills

University College London, United Kingdom - ORCID: 0000-0002-3792-7227

Duncan Wilson

University College London, United Kingdom - ORCID: 0000-0001-6041-8044

Karim Farghaly

University College London, United Kingdom - ORCID: 0000-0003-0717-7434

  1. Amin, K., Mills, G., & Wilson, D. (2023). Key functions in BIM-based AR platforms. Automation in Construction, 150, 104816. DOI: 10.1016/j.autcon.2023.104816
  2. Amin, K. F., & Abanda, F. H. (2019). Building Information Modelling Plan of Work for Managing Construction Projects in Egypt. Journal of Construction in Developing Countries, 24(2), 23-61. DOI: 10.21315/jcdc2019.24.2.2
  3. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & Macintyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), 34-47. DOI: 10.1109/38.963459
  4. Billinghurst, M., Clark, A., & Lee, G. (2015). A Survey of Augmented Reality. Foundations and Trends® in Human–Computer Interaction, 8(2-3), 73-272. DOI: 10.1561/1100000049
  5. Choi, S., & Park, J. S. (2021). Development of augmented reality system for productivity enhancement in offshore plant construction [Article]. Journal of Marine Science and Engineering, 9(2), 1-23, Article 209. DOI: 10.3390/jmse9020209
  6. Dai, F., & Lu, M. (2010). Analytical approach to augmenting site photos with 3D as-built bored pile models. DOI: 10.1109/WSC.2009.5429259
  7. Degani, A., Li, W. B., Sacks, R., & Ma, L. (2019). An Automated System for Projection of Interior Construction Layouts [Article]. IEEE Transactions on Automation Science and Engineering, 16(4), 1825-1835, Article 8664656. DOI: 10.1109/TASE.2019.2897135
  8. Fenais, A., Smilovsky, N., & Ariaratnam, S. T. (2018). Using Augmented Reality in Horizontal Directional Drilling to Reduce the Risk of Utility Damages. Pipelines 2018: Utility Engineering, Surveying, and Multidisciplinary Topics - Proceedings of Sessions of the Pipelines 2018 Conference, Toronto, Canada. DOI: 10.1061/9780784481660.032
  9. Gomez-Jauregui, V., Manchado, C., Del-Castillo-Igareda, J., & Otero, C. (2019). Quantitative evaluation of overlaying discrepancies in mobile augmented reality applications for AEC/FM [Article]. Advances in Engineering Software, 127, 124-140. DOI: 10.1016/j.advengsoft.2018.11.002
  10. Gourlay, M. J., & Held, R. T. (2017). Head‐Mounted‐Display Tracking for Augmented and Virtual Reality. Information Display, 33(1), 6-10. DOI: 10.1002/j.2637-496x.2017.tb00962.x
  11. Jinyu, L., Bangbang, Y., Danpeng, C., Nan, W., Guofeng, Z., & Hujun, B. (2019). Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality. Virtual Reality & Intelligent Hardware, 1(4), 386-410. DOI: 10.1016/j.vrih.2019.07.002
  12. Kwon, O. S., Park, C. S., & Lim, C. R. (2014). A defect management system for reinforced concrete work utilizing BIM, image-matching and augmented reality [Article]. Automation in Construction, 46, 74-81. DOI: 10.1016/j.autcon.2014.05.005
  13. Lin, Z., Petzold, F., & Hsieh, S. H. (2020). 4D-BIM Based Real Time Augmented Reality Navigation System for Tower Crane Operation. Construction Research Congress 2020: Computer Applications - Selected Papers from the Construction Research Congress 2020, Tempe, United States. DOI: 10.1061/9780784482865.088
  14. Lin, Z. Y., Petzold, F., & Ma, Z. L. (2019). A real-time 4D augmented reality system for modular construction progress monitoring. Proceedings of the 36th International Symposium on Automation and Robotics in Construction, ISARC 2019, Canada. DOI: 10.22260/isarc2019/0100
  15. Mirshokraei, M., De Gaetani, C. I., & Migliaccio, F. (2019). A web-based BIM-AR quality management system for structural elements [Article]. Applied Sciences (Switzerland), 9(19), Article 3984. DOI: 10.3390/app9193984
  16. Nassereddine, H., Hanna, A., Veeramani, D., & Lotfallah, W. (2022). Augmented Reality in the Construction Industry: Use-Cases, Benefits, Obstacles, and Future Trends. Frontiers in Built Environment, 8. DOI: 10.3389/fbuil.2022.730094
  17. Nee, A. Y. C., & Ong, S. K. (2023). Springer Handbook of Augmented Reality / edited by Andrew Yeh Ching Nee, Soh Khim Ong (1st 2023. ed.). Springer International Publishing. DOI: 10.1007/978-3-030-67822-7
  18. Palmarini, R., Erkoyuncu, J. A., Roy, R., & Torabmostaedi, H. (2018). A systematic review of augmented reality applications in maintenance. Robotics and Computer-Integrated Manufacturing, 49, 215-228. DOI: 10.1016/j.rcim.2017.06.002
  19. Pustka, D., Hulss, J.-P., Willneff, J., Pankratz, F., Huber, M., & Klinker, G. (2012, 2012). Optical outside-in tracking using unmodified mobile phones. DOI: 10.1109/ismar.2012.6402542
  20. Rolland, J., Baillot, Y., & Goon, A. (2001). A survey of tracking technology for virtual environments. https://www.taylorfrancis.com/chapters/edit/10.1201/9780585383590-9/survey-tracking-technologies-virtual-environments-jannick-rolland-larry-davis-yohan-baillot
  21. Schiavi, B., Havard, V., Beddiar, K., & Baudry, D. (2022). BIM data flow architecture with AR/VR technologies: Use cases in architecture, engineering and construction [Review]. Automation in Construction, 134, 104054, Article 104054. DOI: 10.1016/j.autcon.2021.104054
  22. Servières, M., Renaudin, V., Dupuis, A., & Antigny, N. (2021). Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking. Journal of Sensors, 2021, 1-26. DOI: 10.1155/2021/2054828
  23. Sidani, A., Matoseiro Dinis, F., Duarte, J., Sanhudo, L., Calvetti, D., Santos Baptista, J., Poças Martins, J., & Soeiro, A. (2021). Recent tools and techniques of BIM-Based Augmented Reality: A systematic review. Journal of Building Engineering, 42, 102500. DOI: 10.1016/j.jobe.2021.102500
  24. Siltanen, S. (2012). Theory and applications of marker based augmented reality [VTT Technical Research Centre of Finland]. Espoo, Finland. https://cris.vtt.fi/en/publications/theory-and-applications-of-marker-based-augmented-reality-licenti
  25. Song, J., & Kook, J. (2022). Visual SLAM Based Spatial Recognition and Visualization Method for Mobile AR Systems. Applied System Innovation, 5(1), 11. DOI: 10.3390/asi5010011
  26. Van Krevelen, R., & Poelman, R. (2010). A Survey of Augmented Reality Technologies, Applications and Limitations. International Journal of Virtual Reality (ISSN 1081-1451), 9, 1. DOI: 10.20870/IJVR.2010.9.2.2767
  27. Vuforia.Com. (2023). Device Tracking. Retrieved 4 July 2023 from https://library.vuforia.com/environments/device-tracking
  28. Wang, X., Kim, M. J., Love, P. E. D., & Kang, S. C. (2013). Augmented reality in built environment: Classification and implications for future research [Review]. Automation in Construction, 32, 1-13. DOI: 10.1016/j.autcon.2012.11.021
  29. Wang, X., Truijens, M., Hou, L., Wang, Y., & Zhou, Y. (2014). Integrating Augmented Reality with Building Information Modeling: Onsite construction process controlling for liquefied natural gas industry [Article]. Automation in Construction, 40, 96-105. DOI: 10.1016/j.autcon.2013.12.003
  30. Wikitude. (2023). Extended Tracking augments reality beyond target images. Retrieved 4 July 2023 from https://www.wikitude.com/augmented-reality-extended-tracking/
  31. Williams, G., Gheisari, M., Chen, P. J., & Irizarry, J. (2014). BIM2MAR: An efficient BIM translation to mobile augmented reality applications [Article]. Journal of Management in Engineering, 31(1), Article A4014009. DOI: 10.1061/(ASCE)ME.1943-5479.0000315
  32. Yang, H., Yuan, J., Gao, Y., Sun, X., & Zhang, X. (2023). UPLP-SLAM: Unified point-line-plane feature fusion for RGB-D visual SLAM. Information Fusion, 96, 51-65. DOI: 10.1016/j.inffus.2023.03.006
  33. Yang, M. D., Chao, C. F., Huang, K. S., Lu, L. Y., & Chen, Y. P. (2013). Image-based 3D scene reconstruction and exploration in augmented reality [Article]. Automation in Construction, 33, 48-60. DOI: 10.1016/j.autcon.2012.09.017
  34. Yu, L., Ong, S. K., & Nee, A. Y. C. (2016). A tracking solution for mobile augmented reality based on sensor-aided marker-less tracking and panoramic mapping. Multimedia Tools and Applications, 75(6), 3199-3220. DOI: 10.1007/s11042-014-2430-3
  35. Zhou, F., Duh, H. B.-L., & Billinghurst, M. (2008, 15 - 18 September). Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR. IEEE International Symposium on Mixed and Augmented Reality, Cambridge, UK. DOI: 10.1109/ismar.2008.4637362
PDF
  • Publication Year: 2023
  • Pages: 175-183

XML
  • Publication Year: 2023

Chapter Information

Chapter Title

Adapting BIM-Based AR Positioning Techniques to the Construction Site

Authors

Khalid Amin, Grant Mills, Duncan Wilson, Karim Farghaly

DOI

10.36253/979-12-215-0289-3.17

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Bibliographic Information

Book Title

CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Book Subtitle

Managing the Digital Transformation of Construction Industry

Editors

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/979-12-215-0289-3

eISBN (pdf)

979-12-215-0289-3

eISBN (xml)

979-12-215-0257-2

Series Title

Proceedings e report

Series ISSN

2704-601X

Series E-ISSN

2704-5846

91

Fulltext
downloads

88

Views

Export Citation

1,327

Open Access Books

in the Catalogue

2,048

Book Chapters

3,631,242

Fulltext
downloads

4,271

Authors

from 898 Research Institutions

of 65 Nations

64

scientific boards

from 346 Research Institutions

of 43 Nations

1,217

Referees

from 363 Research Institutions

of 38 Nations