Contenuto in:
Capitolo

Determinants of spatial intensity of stop locations on cruise passengers tracking data

  • Nicoletta D’Angelo
  • Mauro Ferrante
  • Antonino Abbruzzo
  • Giada Adelfio

This paper aims at analyzing the spatial intensity in the distribution of stop locations of cruise passengers during their visit at the destination through a stochastic point process modelling approach on a linear network. Data collected through the integration of GPS tracking technology and questionnaire-based survey on cruise passengers visiting the city of Palermo are used, to identify the main determinants which characterize their stop locations pattern. The spatial intensity of stop locations is estimated through a Gibbs point process model, taking into account for both individual-related variables, contextual-level information, and for spatial interaction among stop points. The Berman-Turner device for maximum pseudolikelihood is considered, by using a quadrature scheme generated on the network. The approach used allows taking into account the linear network determined by the street configuration of the destination under analysis. The results show an influence of both socio-demographic and trip-related characteristics on the stop location patterns, as well as the relevance of distance from the main attractions, and potential interactions among cruise passengers in stop configuration. The proposed approach represents both improvements from the methodological perspective, related to the modelling of spatial point process on a linear network, and from the applied perspective, given that better knowledge of the determinants of spatial intensity of visitors’ stop locations in urban contexts may orient destination management policy.

  • Keywords:
  • Gibbs point processes,
  • GPS tracking data,
  • Cruise tourism,
  • Linear network,
  • Spatial intensity,
+ Mostra di più

Nicoletta D’Angelo

University of Palermo, Italy - ORCID: 0000-0002-8878-5986

Mauro Ferrante

University of Palermo, Italy - ORCID: 0000-0003-1287-5851

Antonino Abbruzzo

University of Palermo, Italy - ORCID: 0000-0003-2196-3570

Giada Adelfio

University of Palermo, Italy - ORCID: 0000-0002-3194-4296

  1. Abbruzzo, A., Ferrante, M., & De Cantis, S. (2020). A pre-processing and net- work analysis of GPS tracking data. Spatial Economic Analysis, pp. 1–24. DOI: 10.1080/17421772.2020.1769170
  2. Baddeley, A., Nair, G., Rakshit, S., McSwiggan, G., & Davies, T.M. (2020). Analysing point patterns on networks – a review. Spatial Statistics, 100435.
  3. Cooper, C. P. (1981). Spatial and temporal patterns of tourist behaviour. Regional Studies, 15(5), pp. 359–371.
  4. East, D., Osborne, P., Kemp, S., & Woodfine, T. (2017). Combining GPS & survey data im- proves understanding of visitor behaviour. Tourism Management, 61, pp. 307–320.
  5. Ferrante, M., De Cantis, S., & Shoval, N. (2018). A general framework for collecting and analysing the tracking data of cruise passengers at the destination. Current Issues in Tourism, 21(12), pp. 1426–1451.
  6. Illian, J.B., & Hendrichsen, D. K. (2010). Gibbs point process models with mixed effects. Environmetrics, 21, pp.341–353.
  7. Jaakson, R. (2004). Beyond the tourist bubble?: cruiseship passengers in port. Annals of tourism research, 31(1), pp. 44–60.
  8. Kallenberg, O. (1984). An informal guide to the theory of conditioning in point processes. International Statistical Review/Revue Internationale de Statistique, pp. 151–164.
  9. Lew, A., & McKercher, B. (2006). Modeling tourist movements: A local destination analysis. Annals of tourism research, 33(2), pp. 403–423.
  10. Liu, B., Huang, S. S., & Fu, H. (2017). An application of network analysis on tourist attractions: The case of Xinjiang, China. Tourism Management, 58, pp. 132–141.
  11. Mateu, J., Moradi, M., & Cronie, O. (2019). Spatio-temporal point patterns on linear networks: Pseudo-separable intensity estimation. Spatial Statistics, 100400.
  12. Meekan, M. G., Duarte, C. M., Ferna´ndez-Gracia, J., Thums, M., Sequeira, A. M., Harcourt, R., & Egu´ıluz, V. M. (2017). The ecology of human mobility. Trends in Ecology Evolution, 32(3), pp. 198–210.
  13. Moradi, M.M., Cronie, O., Rubak, E., Lachieze-Rey, R., Mateu, J., & Baddeley, A. (2019). Resample-smoothing of voronoi intensity estimators. Statistics and computing, 29, pp. 995– 1010.
  14. Moradi, M.M., & Mateu, J. (2020). First- and second-order characteristics of spatio-temporal point processes on linear networks. Journal of Computational and Graphical Statistics, 29(3), pp. 432–443.
  15. Russo, A. P. (2002). The ‘vicious circle’ of tourism development in heritage cities. Annals of tourism research, 29(1), pp. 165–182.
  16. Shoval, N. (2008). Tracking technologies and urban analysis. Cities, 25(1), pp. 21–28.
  17. Shoval, N., & Ahas, R. (2016). The use of tracking technologies in tourism research: the first decade. Tourism Geographies, 18(5), pp. 587–606.
  18. Shoval, N., & Isaacson, M. (2009). Tourist mobility and advanced tracking technologies. Rout- ledge, London.
  19. Stopher, P. (2012). Collecting, managing, and assessing data using sample surveys. Cambridge University Press, Cambridge.
  20. Van Lieshout, M. N. M. (2000). Markov point processes and their applications. World Scientific
  21. Zheng, W., Huang, X., & Li, Y. (2017). Understanding the tourist mobility using GPS: Where is the next place?. Tourism Management, 59, pp. 267–280.
PDF
  • Anno di pubblicazione: 2021
  • Pagine: 159-164

XML
  • Anno di pubblicazione: 2021

Informazioni sul capitolo

Titolo del capitolo

Determinants of spatial intensity of stop locations on cruise passengers tracking data

Autori

Nicoletta D’Angelo, Mauro Ferrante, Antonino Abbruzzo, Giada Adelfio

Lingua

English

DOI

10.36253/978-88-5518-304-8.31

Opera sottoposta a peer review

Anno di pubblicazione

2021

Copyright

© 2021 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Informazioni bibliografiche

Titolo del libro

ASA 2021 Statistics and Information Systems for Policy Evaluation

Sottotitolo del libro

Book of short papers of the opening conference

Curatori

Bruno Bertaccini, Luigi Fabbris, Alessandra Petrucci

Opera sottoposta a peer review

Anno di pubblicazione

2021

Copyright

© 2021 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Editore

Firenze University Press

DOI

10.36253/978-88-5518-304-8

eISBN (pdf)

978-88-5518-304-8

eISBN (xml)

978-88-5518-305-5

Collana

Proceedings e report

ISSN della collana

2704-601X

e-ISSN della collana

2704-5846

266

Download dei libri

359

Visualizzazioni

Salva la citazione

1.388

Libri in accesso aperto

in catalogo

2.597

Capitoli di Libri

4.205.799

Download dei libri

4.979

Autori

da 1067 Istituzioni e centri di ricerca

di 66 Nazioni

70

scientific boards

da 375 Istituzioni e centri di ricerca

di 43 Nazioni

1.304

I referee

da 397 Istituzioni e centri di ricerca

di 38 Nazioni