Contained in:
Book Chapter

A method based on beach profile analysis for shoreline identification

  • Marco Luppichini
  • Monica Bini
  • Andrea Berton
  • Nicola Casarosa
  • Silvia Merlino
  • Marco Paterni

Coastal erosion coupled with human-induced pressure has severely affected the coastal areas of the Mediterranean region. In this context, the Pisa coastal plain shows a long history of erosion, which started at the beginning of the nineteenth century. The work aims to provide a method and a software to extract the shoreline position. The algorithm is based on the variation of the topographic beach profile caused by the transition from water to sand. The algorithm is promoted by the release of a QGIS v3.x plugin uploaded on the official repository of the software.

  • Keywords:
  • Coastal erosion,
  • Shoreline Identifier,
  • Methodology,
+ Show More

Marco Luppichini

University of Ferrara, Italy - ORCID: 0000-0002-0913-3825

Monica Bini

University of Pisa, Italy - ORCID: 0000-0003-1482-2630

Andrea Berton

Clinical Physiology Institute CNR, Italy - ORCID: 0000-0002-8798-9469

Nicola Casarosa

Consorzio di Bonifica, Italy

Silvia Merlino

CNR - ISMAR, The Institute of Marine Sciences, Italy - ORCID: 0000-0002-4537-2903

Marco Paterni

Clinical Physiology Institute CNR, Italy - ORCID: 0000-0002-9799-7059

  1. N. Lenôtre, P. Thierry, D. Batkowski, and F. Vermeersch, “EUROSION project The Coastal Erosion Layer WP 2.6,” no. February, p. 45, 2004.
  2. A. Luijendijk, G. Hagenaars, R. Ranasinghe, F. Baart, G. Donchyts, and S. Aarninkhof, “The State of the World’s Beaches,” Scientific Reports, vol. 8, no. 1, p. 6641, 2018,: DOI: 10.1038/s41598-018-24630-6.
  3. IPCC, “Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,” 2018.
  4. E. C. F. (Eric C. F. Bird, I. G. Union. W. G. on the Dynamics of Coastline Erosion, and I. G. Union. C. on the Coastal Environment, Coastline changes : a global review. Chichester (West Sussex] ; New York : Wiley, 1985.
  5. L. Mentaschi, M. I. Vousdoukas, J.-F. Pekel, E. Voukouvalas, and L. Feyen, “Global long-term observations of coastal erosion and accretion,” Scientific Reports, vol. 8, no. 1, p. 12876, 2018 DOI: 10.1038/s41598-018-30904-w.
  6. IPCC, “Climate change 2013 The Physical Science Basis (eds Stocker, T. F. et al. ),” 2013.
  7. A. Toimil et al., “Climate change-driven coastal erosion modelling in temperate sandy beaches: Methods and uncertainty treatment,” Earth-Science Reviews, vol. 202, p. 103110, 2020, DOI: 10.1016/j.earscirev.2020.103110.
  8. M. Besset, E. J. Anthony, and F. Bouchette, “Multi-decadal variations in delta shorelines and their relationship to river sediment supply: An assessment and review,” Earth-Science Reviews, vol. 193, no. November 2018, pp. 199–219, 2019 DOI: 10.1016/j.earscirev.2019.04.018
  9. E. J. Anthony, N. Marriner, and C. Morhange, “Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000years: From progradation to destruction phase?,” Earth-Science Reviews, vol. 139, pp. 336–361, 2014, DOI: 10.1016/j.earscirev.2014.10.003
  10. E. J. Anthony, “Sand and gravel supply from rivers to coasts: A review from a Mediterranean perspective,” Atti della Societa Toscana di Scienze Naturali, Memorie Serie A, vol. 125, pp. 13–33, 2018.
  11. G. Anfuso, E. Pranzini, and G. Vitale, “An integrated approach to coastal erosion problems in northern Tuscany (Italy): Littoral morphological evolution and cell distribution,” Geomorphology, vol. 129, no. 3, pp. 204–214, 2011, DOI: 10.1016/j.geomorph.2011.01.023.
  12. G. P. Petropoulos, G. Ireland, and B. Barrett, “Surface soil moisture retrievals from remote sensing: Current status, products & future trends,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 83–84, pp. 36–56, 2015, DOI: 10.1016/j.pce.2015.02.009
  13. P. Billi and M. Fazzini, “Global change and river flow in Italy,” Global and Planetary Change, vol. 155, no. July, pp. 234–246, 2017 DOI: 10.1016/j.gloplacha.2017.07.008
  14. G. Blöschl et al., “Changing climate both increases and decreases European river floods.,” Nature, vol. 573, no. 7772, pp. 108–111, Sep. 2019 DOI: 10.1038/s41586-019-1495-6.
  15. J.-P. Degeai et al., “A new interpolation method to measure delta evolution and sediment flux: Application to the late Holocene coastal plain of the Argens River in the western Mediterranean,” Marine Geology, vol. 424, p. 106159, 2020: DOI: 10.1016/j.margeo.2020.106159
  16. M. Pratellesi, P. Ciavola, Roberta. Ivaldi, E. J. Anthony, and C. Armaroli, “River-mouth geomorphological changes over >130 years (1882–2014) in a small Mediterranean delta: Is the Magra delta reverting to an estuary?,” Marine Geology, vol. 403, pp. 215–224, 2018 DOI: 10.1016/j.margeo.2018.06.003.
  17. J. Ericson, C. Vörösmarty, S. Dingman, L. Ward, and M. Meybeck, “Effective Sea-level Rise and Deltas: Causes of Change and Human Dimension Implications,” Global and Planetary Change, vol. 50, pp. 63–82, Feb. 2006, DOI: 10.1016/j.gloplacha.2005.07.004.
  18. J. P. M. Syvitski et al., “Sinking deltas due to human activities,” Nature Geoscience, vol. 2, no. 10, pp. 681–686, 2009 DOI: 10.1038/ngeo629.
  19. Z. D. Tessler, C. J. Vörösmarty, M. Grossberg, I. Gladkova, and H. Aizenman, “A global empirical typology of anthropogenic drivers of environmental change in deltas,” Sustainability Science, vol. 11, no. 4, pp. 525–537, 2016, DOI: 10.1007/s11625-016-0357-5.
  20. S. K. Dolan, R., Hayden, P.B., May, P., May, “The reliability of shoreline change measurements from aerial photographs.,” Shore Beach, vol. 48, pp. 22–29, 1980.
  21. E. H. Boak and I. L. Turner, “Shoreline Definition and Detection: A Review,” Journal of Coastal Research, vol. 21, no. 4 (214), pp. 688–703, Jul. 2005 DOI: 10.2112/03-0071.1.
  22. D. Di Luccio et al., “Monitoring and modelling coastal vulnerability and mitigation proposal for an archaeological site (Kaulonia, Southern Italy),” Sustainability (Switzerland), vol. 10, no. 6, pp. 1–18, 2018, DOI: 10.3390/su10062017.
  23. J. T. Kelly and A. M. Gontz, “Using GPS-surveyed intertidal zones to determine the validity of shorelines automatically mapped by Landsat water indices,” International Journal of Applied Earth Observation and Geoinformation, vol. 65, no. March 2017, pp. 92–104, 2018, DOI: 10.1016/j.jag.2017.10.007.
  24. K. Vos, M. D. Harley, K. D. Splinter, J. A. Simmons, and I. L. Turner, “Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery,” Coastal Engineering, vol. 150, no. April, pp. 160–174, 2019, DOI: 10.1016/j.coastaleng.2019.04.004.
  25. W. Li and P. Gong, “Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery,” Remote Sensing of Environment, vol. 179, pp. 196–209, 2016 DOI: 10.1016/j.rse.2016.03.031.
  26. G. García-Rubio, D. Huntley, and P. Russell, “Evaluating shoreline identification using optical satellite images,” Marine Geology, vol. 359, pp. 96–105, 2015 DOI: 10.1016/j.margeo.2014.11.002.
  27. R. S. Dewi and W. Bijker, “Dynamics of shoreline changes in the coastal region of Sayung, Indonesia,” Egyptian Journal of Remote Sensing and Space Science, vol. 23, no. 2, pp. 181–193, 2020, DOI: 10.1016/j.rsma.2020.101167.
  28. M. A. Kabir, M. Salauddin, K. T. Hossain, I. A. Tanim, M. M. H. Saddam, and A. U. Ahmad, “Assessing the shoreline dynamics of Hatiya Island of Meghna estuary in Bangladesh using multiband satellite imageries and hydro-meteorological data,” Regional Studies in Marine Science, vol. 35, p. 101167, 2020, DOI: 10.1016/j.rsma.2020.101167.
  29. S. J. Pitman, D. E. Hart, and M. H. Katurji, “Application of UAV techniques to expand beach research possibilities: A case study of coarse clastic beach cusps,” Continental Shelf Research, vol. 184, no. April, pp. 44–53, 2019 DOI: 10.1016/j.csr.2019.07.008
  30. M. M. Mahabot et al., “The basics for a permanent observatory of shoreline evolution in tropical environments; lessons from back-reef beaches in La Reunion Island,” Comptes Rendus - Geoscience, vol. 349, no. 6–7, pp. 330–340, 2017 DOI: 10.1016/j.crte.2017.09.010
  31. F. Nunziata, A. Buono, M. Migliaccio, G. Benassai, and D. Di Luccio, “Shoreline erosion of microtidal beaches examined with UAV and remote sensing techniques,” 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters, MetroSea 2018 - Proceedings, pp. 162–166, 2019 DOI: 10.1109/MetroSea.2018.8657843.
  32. T. Templin, D. Popielarczyk, and R. Kosecki, “Application of Low-Cost Fixed-Wing UAV for Inland Lakes Shoreline Investigation,” Pure and Applied Geophysics, vol. 175, no. 9, pp. 3263–3283, 2018 DOI: 10.1007/s00024-017-1707-7.
  33. J. R. Mackenzie, N. C. Duke, and A. L. Wood, “The Shoreline Video Assessment Method (S-VAM): Using dynamic hyperlapse image acquisition to evaluate shoreline mangrove forest structure, values, degradation and threats,” Marine Pollution Bulletin, vol. 109, no. 2, pp. 751–763, 2016,:. DOI: 10.1016/j.marpolbul.2016.05.069
  34. C. Bouvier, Y. Balouin, and B. Castelle, “Video monitoring of sandbar-shoreline response to an offshore submerged structure at a microtidal beach,” Geomorphology, vol. 295, no. January, pp. 297–305, 2017 DOI: 10.1016/j.geomorph.2017.07.017.
  35. J. Moussaid, A. A. Fora, B. Zourarah, M. Maanan, and M. Maanan, “Using automatic computation to analyze the rate of shoreline change on the Kenitra coast, Morocco,” Ocean Engineering, vol. 102, pp. 71–77, 2015, DOI: 10.1016/j.oceaneng.2015.04.044
  36. M. Bini, N. Casarosa, and A. Ribolini, “L’evoluzione diacronica della linea di riva del litorale Pisano (1938-2004) sulla base del confront di immagini aeree georeferenziate,” Atti della Societa Toscana di Scienze Naturali, Memorie Serie A, vol. 113, no. January 2008, pp. 1–12, 2008.
  37. N. G. Plant and R. A. Holman, “Intertidal beach profile estimation using video images,” Marine Geology, vol. 140, no. 1, pp. 1–24, 1997 DOI: 10.1016/S0025-3227(97)00019-4
  38. R. K. Smith and K. R. Bryan, “Monitoring Beach Face Volume with a Combination of Intermittent Profiling and Video Imagery,” Journal of Coastal Research, vol. 2007, no. 234, pp. 892–898, Jul. 2007, DOI: 10.2112/04-0287.1.
  39. Federici and Mazzanti, Note sulle pianure costiere della Toscana. Roma, 1993.
  40. E. Pranzini, “Updrift river mouth migration on cuspate deltas: two examples from the coast of Tuscany (Italy),” Geomorphology, vol. 38, no. 1, pp. 125–132, 2001, DOI: 10.1016/S0169-555X(00)00076-3.
  41. G. Sarti, M. Bini, and S. Giacomelli, “The growth and the decline of Pisa (Tuscany, Italy) up to the Middle ages: correlations with landscape and geology,” Quat. Ital. J. Quat. Sci., vol. 23, pp. 311–322, Oct. 2010.
  42. M. Bini et al., “Palaeoenvironments and palaeotopography of a multilayered city during the Etruscan and Roman periods: early interaction of fluvial processes and urban growth at Pisa (Tuscany, Italy),” Journal of Archaeological Science, vol. 59, pp. 197–210, 2015 DOI: 10.1016/j.jas.2015.04.005
  43. R. Mazzanti, La pianura pisana e i rilievi contermini. 1994.
  44. E. Pranzini, “Updrift river mouth migration on cuspate deltas: two examples from the coast of Tuscany (Italy),” Geomorphology, vol. 38, no. 1, pp. 125–132, 2001, DOI: 10.1016/S0169-555X(00)00076-3.
  45. G. Sarti, M. Bini, and S. Giacomelli, “The growth and the decline of Pisa (Tuscany, Italy) up to the Middle ages: correlations with landscape and geology,” Quat. Ital. J. Quat. Sci., vol. 23, pp. 311–322, Oct. 2010.
  46. M. Bini et al., “Palaeoenvironments and palaeotopography of a multilayered city during the Etruscan and Roman periods: early interaction of fluvial processes and urban growth at Pisa (Tuscany, Italy),” Journal of Archaeological Science, vol. 59, pp. 197–210, 2015, DOI: 10.1016/j.jas.2015.04.005
  47. G. Sarti et al., “Climatic signature of two mid–late Holocene fluvial incisions formed under sea-level highstand conditions (Pisa coastal plain, NW Tuscany, Italy),” Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 424, pp. 183–195, 2015 DOI: 10.1016/j.palaeo.2015.02.020.
  48. A. R. Toniolo, Sulle Variazioni di spiaggia a foce d’Arno (Marina di Pisa) dalla fine del secolo XViii ai nostri giorni: Studio storico fisiografico. Pisa: Tipografia Municipale, 1910.
  49. E. Pranzini, G. Anfuso, I. Cinelli, M. Piccardi, and G. Vitale, “Shore protection structures increase and evolution on the Northern Tuscany Coast (Italy): Influence of tourism industry,” Water (Switzerland), vol. 10, no. 11, 2018 DOI: 10.3390/w10111647
  50. N. Casarosa, “Studio dell ’ evoluzione del litorale pisano tramite rilievi con GPS differenziale ( 2008-2014 ),” Studi costieri, pp. 3–19, 2016.
  51. M. Bini, N. Casarosa, and M. Luppichini, “Exploring the relationship between river discharge and coastal erosion: An integrated approach applied to the Pisa coastal plain (italy),” Remote Sensing, vol. 13, no. 2, 2021 DOI: 10.3390/rs13020226.
  52. Autorità di bacino del Fiume Arno, “Attività estrattive,” in Supplemento alla Gazzetta Ufficiale, Serie Generale n. 122, 2000.
  53. P. Billi and M. Rinaldi, “Human impact on sediment yield and channel dynamics in the Arno River Basin (central Italy),” Human impact on erosion and sedimentation. Proc. international symposium, Rabat, Morocco, 1997, vol. 245, no. 245, pp. 301–311, 1997.
  54. P. Aminti, C. Cammelli, L. Cappietti, N. L. Jackson, K. F. Nordstrom, and E. Pranzini, “Evaluation of Beach Response to Submerged Groin Construction at Marina di Ronchi, Italy, Using Field Data and a Numerical Simulation Model,” Journal of Coastal Research, pp. 99–120, Sep. 2004, [Online]. Available: http://www.jstor.org/stable/25736248
  55. M. Bini, N. Casarosa, and A. Ribolini, “L’evoluzione diacronica della linea di riva del litorale Pisano (1938-2004) sulla base del confront di immagini aeree georeferenziate,” Atti della Societa Toscana di Scienze Naturali, Memorie Serie A, vol. 113, no. January 2008, pp. 1–12, 2008.
  56. E. Pranzini and D. Simonetti, “Influenza del fattore scala sulla classificazione delle spiagge in base alla loro tendenza evolutiva,” Studi costieri, vol. 14, pp. 13–28, 2008.
  57. D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004 DOI: 10.1023/B:VISI.0000029664.99615.94
  58. M. J. Westoby, J. Brasington, N. F. Glasser, M. J. Hambrey, and J. M. Reynolds, “‘Structure-from-Motion’’ photogrammetry: A low-cost, effective tool for geoscience applications,’” Geomorphology, vol. 179, pp. 300–314, 2012, DOI: 10.1016/j.geomorph.2012.08.021.
  59. M. Favalli, A. Fornaciai, I. Isola, S. Tarquini, and L. Nannipieri, “Multiview 3D reconstruction in geosciences,” Computers & Geosciences, vol. 44, pp. 168–176, 2012, DOI: 10.1016/j.cageo.2011.09.012.
  60. D. Bertoni, G. Sarti, F. Alquini, and D. Ciccarelli, “Implementing a coastal dune vulnerability index (CDVI) to support coastal management in different settings (Brazil and Italy),” Ocean and Coastal Management, vol. 180, 2019, DOI: 10.1016/j.ocecoaman.2019.104916.
  61. M. Kohv, E. Sepp, and L. Vammus, “Assessing multitemporal water-level changes with uav-based photogrammetry,” The Photogrammetric Record, vol. 32, no. 160, pp. 424–442, Dec. 2017, DOI: 10.1111/phor.12214.
  62. M. Luppichini, M. Bini, M. Paterni, A. Berton, and S. Merlino, “A new beach topography-based method for shoreline identification,” Water (Switzerland), vol. 12, no. 11, pp. 1–11, Nov. 2020, DOI: 10.3390/w12113110.
  63. K. Vos, M. D. Harley, K. D. Splinter, J. A. Simmons, and I. L. Turner, “Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery,” Coastal Engineering, vol. 150, no. April, pp. 160–174, 2019,. DOI: 10.1016/j.coastaleng.2019.04.004
  64. G. García-Rubio, D. Huntley, and P. Russell, “Evaluating shoreline identification using optical satellite images,” Marine Geology, vol. 359, pp. 96–105, 2015, DOI: 10.1016/j.margeo.2014.11.002.
  65. E. Sánchez-García, J. E. Pardo-Pascual, A. Balaguer-Beser, and J. Almonacid-Caballer, “Analysis of the shoreline position extracted from landsat TM and ETM+ imagery,” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, vol. 40, no. 7W3, pp. 991–998, 2015, DOI: 10.5194/isprsarchives-XL-7-W3-991-2015.
PDF
  • Publication Year: 2022
  • Pages: 47-60

XML
  • Publication Year: 2022

Chapter Information

Chapter Title

A method based on beach profile analysis for shoreline identification

Authors

Marco Luppichini, Monica Bini, Andrea Berton, Nicola Casarosa, Silvia Merlino, Marco Paterni

Language

English

DOI

10.36253/979-12-215-0030-1.05

Peer Reviewed

Publication Year

2022

Copyright Information

© 2022 Author(s)

Content License

CC BY-NC-SA 4.0

Metadata License

CC0 1.0

Bibliographic Information

Book Title

Ninth International Symposium “Monitoring of Mediterranean Coastal Areas: Problems and Measurement Techniques”

Book Subtitle

Livorno (Italy) 14th-16th June 2022

Editors

Laura Bonora, Donatella Carboni, Matteo De Vincenzi, Giorgio Matteucci

Peer Reviewed

Publication Year

2022

Copyright Information

© 2022 Author(s)

Content License

CC BY-NC-SA 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/979-12-215-0030-1

eISBN (pdf)

979-12-215-0030-1

eISBN (xml)

979-12-215-0031-8

Series Title

Monitoring of Mediterranean Coastal Areas: Problems and Measurement Techniques

Series ISSN

2975-0423

Series E-ISSN

2975-0288

180

Fulltext
downloads

112

Views

Export Citation

1,327

Open Access Books

in the Catalogue

2,048

Book Chapters

3,631,242

Fulltext
downloads

4,271

Authors

from 898 Research Institutions

of 65 Nations

64

scientific boards

from 346 Research Institutions

of 43 Nations

1,217

Referees

from 363 Research Institutions

of 38 Nations