Elementi di petrologia sperimentale

  • Francesco Pasqualino Vetere,

This volume is focused on the fundamentals of experimental petrology, aiming to facilitate the understanding of the dynamics, formation, and evolution of planet Earth and rocky planets. The study is primarily based on the author’s experience in the fields of petrology and volcanology, with the purpose of introducing university and PhD students in Earth Sciences or related fields to the world of experimental petrology—a young and evolving discipline.

  • Keywords:
  • Earth Sciences,
  • Experimental Petrology,
  • Magma,
  • Silicate melts,
  • Rheology,
+ Show more

Francesco Pasqualino Vetere

University of Siena, Italy - ORCID: 0000-0002-0723-1990

Francesco P. Vetere is professor in Petrology and Volcanology at the Department of Physical Sciences, Earth and Environment (DSFTA), University of Siena. He has taught at the Universities of Hannover (DE), Calabria, Chieti, and Perugia. His main areas of research span from igneous petrology to volcanology, with a particular focus on the rheology of magmas.
  1. Agee, C. B., and Walker, D. (1993). Olivine flotation in mantle melt. Earth and Planetary Science Letters, 114, 315–324.
  2. Alex, A. and Zajacz, Z. (2020) “Alex_Zajacz_method”, Mendeley Data, V2. DOI: 10.17632/w4vpcbj7n3.2
  3. Angel R. J. (1988) High-pressure structure of anorthite. Amer. Mineral. 73, 1114-1119.
  4. Angell C.A., Cheeseman P.A. and Tamaddon S. (1982). Pressure enhancement of ion mobilities in liquid silicates from computer simulation studies to 800 kilobars. Science 218:885–87
  5. Annen C., Blundy J., Sparks R., (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539.
  6. Antonelli G. (1836). Proprietà del vetro “Nuovo dizionario universale tecnologico (1836) Venezia, presso Giuseppe Antonelli ED.
  7. Armienti P., Innocenti F., Pareschi M.T., Pompilio M., (1994) Effects of magma storage and ascent on the kinetics of crystal growth. The case of the 1991-92 Mt. Etna eruption., Contributions to Mineralogy and Petrology . 115: 402-414
  8. Armienti P (2008) Decryption of Igneous Rock Textures: Crystal Size Distribution Tools. Reviews in Mineralogy and Geochemistry, 69, 623-649. DOI: 10.2138/rmg.2008.69.16
  9. Armienti P. and Pareschi M.T. (1992) Cooling hystory of basalts and its effects on the kinetics of olivine crystallization. Acta Volcanologica, 2,Marinelli Volume, 7-15.
  10. Armienti P. and Pareschi M.T. (1993) Measurement of crystal size distributions in lavas: implications for magma cooling history. IAPR,
  11. Armienti P.,Innocenti F.,Pareschi M.T.,Pompilio M.,Rocchi S. (1991) Crystal population density in not stationary volcanic systems: estimate of olivine growth rate in basalts of Lanzarote (Canary Islands). Mineral. Petrol., 44, 181-196.
  12. Arzi A.A. (1978) Critical phenomena in the rheology of partially melted rocks. Tectono- physics 44:173–84
  13. Asimow P. D., and Ghiorso M. S. (1998) Algorithm modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist, 83, 1127–1131.
  14. Asimow P.D., Dixon J., Langmuir C. (2004) A hydrous melting and fractionation model for mid-ocean ridge basalts: application to the mid-Atlantic ridge near the Azores. Geochem. Geophys. Geosyst. 5 (1).
  15. Asimow P.D., Langmuir C. (2003) The importance of water to oceanic mantle melting regimes. Nature 421, 815–820.
  16. Aubaud C., Hauri E.H., Hirschmann M.M. (2004) Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys. Res. Lett. 31, L20611.
  17. Baker D.R. (1998) Estimate (applies only to granite/rhyolite between 700-900oC) J. Str. Geol 20, 1395-1404
  18. Baker D. R. (1996) Granitic melt viscosities: Empirical and configurational entropy models for their calculation. Amer. Mineral. 81, 126-134.
  19. Baker D.R., Balcone-Boissard H (2009) Halogen diffusion in magmatic systems: our current state of knowledge. Chem Geol 263:82-88
  20. Baker D.R., Watson EB (1988) Diffusion of major and trace elements in compositionally complex CI- and F-bearing silicate melts. J Non-Cryst Solids 102:62-70
  21. Baker D. R. (1991) Interdiffusion of hydrous dacitic and rhyolitic melts and the efficacy of rhyolite contamination of dacitic enclaves, Contrib. Mineral. Petrol., 106, 462–473.
  22. Baker D. R. (1992) Tracer diffusion of network formers and multicomponent diffusion in dacitic and rhyolitic melts, Geochim. Cosmochim. Acta, 56, 617–631.
  23. Baker D. R. (1995) Diffusion of silicon and gallium (as an analogue for aluminum) network-forming cations and their relationship to viscosity in albite melt, Geochim. Cosmochim. Acta, 59, 3561–3571.
  24. Bansal N. P. and Doremus R. H. (2013) Handbook of glass properties. Elsevier.
  25. Barnes, H. A. (1989) Shear-thickening (dilatancy) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33, 329–366. DOI: 10.1122/1.550017
  26. Barnes, H. A. (1999) The yield stress—a review or ‘παντα ρει’—everything flows? J. Non-Newton. Fluid 81, 133–178.
  27. Becker G. E. (1897) Some queries on rock differentiation. Amer. J. Sci. 3, 21-40.
  28. Behrens H. (2010) Noble gas diffusion in silicate glasses and melts, Rev. Mineral. Geochem., 72, 227–267.
  29. Behrens H. (2020) Water speciation in oxide glasses and melts. Chemical Geology 558 (2020) 119850
  30. Behrens H. and Nowak M. (2003) Quantification of H2O spe­ciation in silicate glasses and melts by IR spectroscopy: In situ versus quench techniques. Phase Transitions, 76(1–2), 45–6. DOI: 10.1080/0141159031000076048
  31. Behrens H., Meyer M., Holtz F., Benne D., Nowak M., (2001) The effect of alkali ionic radius, temperature, and pressure on the solubility of water in MAlSi3O8 melts (M 1⁄4 Li, Na, K, Rb). Chem. Geol. 174, 275–289.
  32. Behrens H., Misiti V., Freda C., Vetere F., Botcharnikov R. E., and Scarlato P. (2009) Solubility of H2O and CO2 in ultra­-potassic melts at 1200 and 1250 °C and pressure from 50 to 500 MPa. American Mineralogist, 94(1), 105–120. DOI: 10.2138/am.2009.2796
  33. Bercovici D., Karato S.i. (2003) Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44.
  34. Berndt J., Koepke J., and Holtz F. (2005) An Experimental Investiga- tion of the Influence of Water and Oxygen Fugacity on Dif- ferentiation of MORB at 200 MPa, J. Petrol., 46, 135–167 DOI: 10.1093/petrology/egh066
  35. Berndt J., Liebske C., Holtz F., Freise M., Nowak M., Ziegenbein D., Hurkuck W. and Koepke, J. (2002) A combined rapid-quench and H2 membrane for Internally Heated Pressure Vessel: Description and application for water solubility in basaltic melts, Am. Mineral., 87, 1717–1726
  36. Birch F., Roy R. F. and Decker E. R. (1968) Heat flow and thermal history in New England and New York. In Studies of Appalachian Geology, Northern and Maritime, ed. E-an Zen, W. S. White, J. B. Hadley, and J. B. Thompson. New York: Interscience Publishers, 437–452.
  37. Bird R.B., Stewart W.E. and Lightfoot E.N. (1960). Transport Phenomena. New York: Wiley. 780 pp.
  38. Blank J. G. (1993) An experimental investigation of the behavior of carbon dioxide in rhyolitic melt, PhD dissertation, Calif. Inst. Technol., Pasadena, Calif.
  39. Blank J. G., and Brooker R. A. (1994) Experimental studies of carbon dioxide in silicate melts: Solubility, speciation, and stable carbon isotope behavior. Reviews in Mineralogy and Geochemistry, 30, 157–186
  40. Bockris J. O. M., Mackenzie J. D., and Kitchener J. A. (1955) Viscous flow in silica and binary liquid silicates. Trans. Farad. Soc. 51, 1734-1748.
  41. Bolfan-Casanova N. (2005) Water in the earth’s mantle. Mineral. Mag. 69, 229–257.
  42. Botcharnikov R. E., Almeev R. R., Koepke J., and Holtz F. (2008) Phase relations and liquid lines of descent in hydrous ferrobasalt – Implications for the skaergaard intrusion and Columbia river flood basalts, J. Petrol., 49, 1687–1727. DOI: 10.1093/petrology/egn043
  43. Botcharnikov R. E., Koepke J., Holtz, F., McCammon C., and Wilke M. (2005) The effect of water activity on the oxidation and struc- tural state of Fe in a ferro-basaltic melt, Geochim. Cosmochim. Ac., 69, 5071–5085 DOI: 10.1016/j.gca.2005.04.023
  44. Bottinga Y. and Weill D. F. (1970) Densities of liquid silicate systems calculated from partial molar volumes of oxide components. Amer. J. Sci. 269, 169-182.
  45. Bottinga Y., Weill D., and Richet P. (1982) Density calculations for silicate liquids. I. Revised method for aluminosilicate compositions. Geochim. Cosmochim. Acta 46, 909-919.
  46. Bottinga Y., Weill D.F., (1972) The viscosity of magmatic silicate liquids: a model for calculation. Am. J. Sci. 272, 438–475. DOI: 10.2475/ajs.272.5.438.
  47. Bowen (1928) The evolution of the igneous rocks: Princeton university Press, Princeton, New Jersey, 334 pp. (1928). Reprinted with a new introduction by J.F. Schairer and a complete bibliography of the writings of N. L. Bowen, Dover Publications, Inc., New York (1956).
  48. Boyd F.R., and England J.L., (1960). Apparatus for phase-equilibrium measurements at pressure up to 50 kilobars and temperatures up to 1750°C. J. Geoph. Res., 65, 741-748.
  49. Brandeis G. & Jaupart C. (1987). The kinetics of nucleation and crystal growth and scaling laws for magmatic crystallisation. Contributions to Mineralogy and Petrology, 96, 24–34.
  50. Brawer S. A. and White W. B. (1975) Raman spectroscopic investigation of the structure of silicate glasses. I. The binary silicate glasses. J. Chem. Phys. 63, 2421-2432.
  51. Brenner H. (1970) Rheology of 2-phase systems. Annu. Rev. Fluid Mech. 2, 137–176. DOI: 10.1146/annurev.fl.02.010170.001033
  52. Brenner H. (1974) Rheology of a dilute suspension of axisymmetric Brownian particles. Int. J. Multiphas. Flow 1, 195–341. DOI: 10.1016/0301-9322(74)90018-4
  53. Brese N. E. and O'Keefe M. (1991) Bond-valence parameters for solids. Acta Cryst. B 47, 192-197.
  54. Brounce M. N., Kelley K. A., and Cottrell E. (2014) Variations in Fe3+/PFe of Mariana Arc Basalts and MantleWedge f O2, J. Petrol., 55, 2514–2536.
  55. Brownlee D.E. ( 2016) Cosmic dust: Building blocks of planets falling from the sky. ElementsVolume 12, Issue 3, Pages 165 - 170 DOI: 10.2113/gselements.12.3.165
  56. Brückenr R., Demharter G. (1975) Systematische unterstuchungen über die Anwend- barkeit von Penetrationsviskosimetern. Glastechinische Berichte 48, 12–18. DOI: 10.1093/petrology/egu065
  57. Bryon D. N., Atherton, M. P. & Hunter, R. H. (1995). The interpretation of granitic textures from serial thin sectioning, image-analysis and 3-dimensional reconstruction. Mineralogical Magazine, 59, 203–11.
  58. Bureau H., Keppler H. (1999) Complete miscibility between silicate melts and hydrous fluids in the upper mantle; experimental evidence and geochemical implications. Earth Planet. Sci. Lett. 165, 187–196.
  59. Byrne P. K., C. Klimczak D. A. Williams D. M. Hurwitz S. C. Solomon J. W. Head F. Preusker and Oberst J. (2013) An assemblage of lava flow features on Mercury, J. Geophys. Res. Planets, 118, 1303–1322 DOI: 10.1002/jgre.20052
  60. Byrne P.K., Ostrach L.R., Fassett C.I., Chapman C.R., Denevi B.W., Evans A.J., Klimczak C., BanksM.E., Head J.W., and Solomon S.C. (2016) Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga, Geophys. Res. Lett., 43, 7408–7416. DOI: 10.1002/2016GL069412
  61. Calas G. and Petiau J. (1983) Coordination of iron in oxide glasses through high-resolution K-edge spectra: Information from the pre-edge. Solid State Communications, 48, 7, 625–629. DOI: 10.1016/0038-1098(83)90530-6
  62. Campbell I., Taylor S., (1983) No water, no granites-no oceans, no continents. Geophys. Res. Lett. 10, 1061–1064.
  63. Canil D. and O’Neill H. S. C. (1996) Distribution of ferric iron in some upper-mantle assemblages, J. Petrol., 37, 609–635 DOI: 10.1093/petrology/37.3.609, 1996
  64. Caricchi L., Burlini L., Ulmer P., Gerya T., Vassalli M., Papale P., (2007) Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth and Planetary Science Letters, 264, 402–419.
  65. Carmichael I. S. E. and Nicholls J. (1967) Iron-titanium oxides and oxy- gen fugacities in volcanic rocks, J. Geophys. Res., 72, 4665– 4687. DOI: 10.1029/JZ072i018p04665, 1967.
  66. Carmichael I.S. (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib. Mineral. Petrol. 106 (2), 129–141.
  67. Carroll M. R. and Webster J. D. (1994) Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas. In Volatiles in Magmas (eds. M. R. Carroll and J. L. Holloway), pp. 231- 280, Mineralogical Society of America. Washington DC.
  68. Carslaw H. S., and Jaeger J. C. (1959) Conduction of Heat in olids, 2nd edn. Oxford: Oxford University Press, 510 pp.
  69. Cartier C. and Wood, B.J. (2019) The role of reducing conditions in building Mercury. Elem. Int. Mag. Mineral. Geochem. Petrol. 15 (1), 39–45.
  70. Cashman K.V. and Marsh B.M. (1988) Crystal size distribution (CSD) in rocks and the kinetiks and dynamics of crystallization. II: Makaopuhi lava lake. Contib. Mineral. Petrol., 99: 292-305.
  71. Cashman K.V., Sparks R.S.J., Blundy J.D. (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055.
  72. Castaing R (1951) PhD thesis. Paris, France: Université de Paris
  73. Castro J. M., Cashman K. V. & Manga M. (2003) A technique for measuring 3D crystal-size distributions of prismatic microlites in obsidian. American Mineralogist, 88, 1230–40.
  74. Chayes F. (1975) A world data base for igneous petrology. Carnegie Instn. Washington YearBook 74, 549-550.
  75. Chevrel MO, Cimarelli C, deBiasi L, Hanson JB, Lavallée Y, Arzilli F, Dingwell DB (2015) Viscosity measurements of crystallizing andesite from Tungurahua volcano (Ecuador). Geochemistry, Geophysics, Geosystems, DOI: 10.1002/2014GC005661
  76. Chevrel MO, Platz T, Hauber E, Baratoux D, Lavallée Y, Dingwell DB (2013) Lava flow rheology: A comparison of morphological and petrological methods. Earth Planet Sci Lett 384:109-120, DOI: 10.1016/j.epsl.2013.09.022
  77. Chong J, Christiansen E, Baer A (1971) Rheology of concentrated suspensions. Journal of applied polymer science 15:2007-2021
  78. Cicconi M. R., Giuli G., Ertel-Ingrisch W., Paris E., & Dingwell D. B. (2015) The effect of the [Na/(Na+K)] ratio on Fe speciation in phonolitic glasses. American Mineralogist, 100, 7, 1610–1619. DOI: 10.2138/am-2015-5155
  79. Cimarelli C, Costa A, Mueller S, Mader HM (2011) Rheology of magmas with bimodal crystal size and shape distributions: Insights from analog experiments. Geochemistry, Geophysics, Geosystems 12, Q07024 DOI: 10.1029/2011GC003606.
  80. Cordonnier B., Schmalholz S. M., Hess K. U., and Dingwell D. B. (2012) Viscous heating in silicate melts: An experimental and numerical compari- son. J. Geophys. Res., 117, article no. B02203.
  81. Cormack A. N. and Du J. (2001) Molecular dynamics simulations of soda-lime-silicate glasses. J. Non-Cryst. Solids 293, 283-289.
  82. Cormier L., Ghaleb D., Neuville D. R., Delaye J.-M., and Calas G. (2003) Chemical dependence of network topology of calcium aluminosilicate glasses: a computer simulation study. J. Non- Cryst. Solids 332, 255-270.
  83. Costa A, Caricchi L, Bagdassarov N (2009) A model for the rheology of particle‐bearing suspensions and partially molten rocks. Geochemistry, Geophysics, Geosystems 10
  84. Costa A., (2005) Viscosity of high crystal content melts: dependence on solid reaction. Geophysical Research Letters, 32, L22308, 1-5.
  85. Cottrell E. and Kelley K. A. (2011) The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle, Earth Planet. Sc. Lett., 305, 270–282 DOI: 10.1016/j.epsl.2011.03.014
  86. Cottrell E., Gardner J. E., and Rutherford M. J. (1999) Petrologic and experimental evidence for the movement and heating of the pre-eruptive Minoan rhyodacite (San- torini, Greece), Contrib. Mineral. Petrol., 135, 315–331. DOI: 10.1007/s004100050514.
  87. Couette M.M. (1888) La viscosité des liquides, Bull. Sci. Phys., 1888.
  88. Couette M.M. (1890) Corrections relatives aux extrémités des tubes dans la méthode de Poiseuille, J. de Phys., 1890.
  89. Coulomb C.A., (1787) Recherches théoretiques et éxperimentales sur la force de torsion et sur l’élasticité des fils du métal. In: Mémoires de l’Institut (Savants Etrangers), 1801.
  90. Cruz-Orive L.M. (1987) Stereology: historical notes and recent evolution. ISS Commemorative-Memorial Volume (ed. by R. E. Miles), Acta Stereol. 6/II, 43–56.
  91. Darken L.S., and Gurry R.W., (1945) The system iron-oxygen. I. The Wüstite field and related equilibria: Journal of the American Chemical Society, v. 67, p. 1398– 1412. DOI: 10.1021/ja01224a050
  92. Darken L.S., and Gurry R.W., (1946) The system iron-oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases: Journal of the American Chemical Society, v. 68, p. 798–816. DOI: 10.1021/ja01209a030
  93. de Bruijn H. (1951) General discussion. Discuss Faraday Soc. 11, 86–86.
  94. DeBolt MA, Easteal AJ, Macedo PB, Moynihan CT (1976) Analysis of structural relaxation in glass using rate heating data. J Am Ceram Soc 59:16–21
  95. Delesse M.A. (1847) Procede ́ mecanique pour determiner la composition des roches. C. R. Acad. Sci. Paris, 25, 544–545.
  96. Desch S. J., Morris M. A., Connolly H. C. and Boss A. P. (2012) The importance of experiments: Constraints on chondrule formation models. Meteorit Planet Sci 47, 1139–1156.
  97. DeVries R.C., Roy R.F.O.E. (1954) The system TiO2-SiO2. Trans. Brit. Ceram. Soc. 53, 525–540.
  98. Di Carlo I., Pichavant M., Rotolo S. G., and Scaillet B. (2006) Ex- perimental Crystallization of a High-K Arc Basalt: the Golden Pumice, Stromboli Volcano (Italy), J. Petrol., 47, 1317–1343. DOI: 10.1093/petrology/egl011
  99. Dingwell D. B. (1995) Viscosity and anelasticity of melts. Mineral Physics and Crystallography. A Handbookof Physical Constants AGU Reference Shelf 2
  100. Dingwell D. B. (1995) Viscosity and anelasticity of melts. Mineral Physics and Crystallography. A Handbookof Physical Constants AGU Reference Shelf 2
  101. Dingwell D. B. and Webb S. L. 1990. Relaxation in silicate melts. Eur. J. Mineral. 2, 427-449.
  102. Dingwell DB (1985) The structure and properties of fluorine-rich magmas: a review of experimental studies. In: Taylor RP, Strong DF (eds) Recent Advances in the Geology of Granite-Related Mineral Deposits. Can Inst Mining Metal 39:1-12
  103. Dingwell D. B. (2006) Transport properties of magmas: Diffusion and rheology, Elements, 2, 281–286.
  104. Dingwell D.B., Knoche R., Webb S.L., (1993) The effect of P2O5 on the viscosity of haplogranitic liquid. Eur. J. Mineral. 5, 133–140.
  105. Dodd R.T., (1978a) The composition and origin of large microporphyritic chondrules in the Manych (L-3) chondrite. Earth Planet. Sci. Lett. 39, 52–66.
  106. Dodd R.T., (1978b) Compositions of droplet chondrules in the Manych (L-3) chondrite and the origin of chondrules. Earth Planet. Sci. Lett. 40, 71–82.
  107. Doelter C. (1902) Die chemische Zusammensetzung und die Genesis Monzonigesteine. Tschermaks Mineral. Petr. Mitt. 21, 195-225.
  108. Douglas R.W., Amstrong W.L., Edward J.P., Hall D. (1965) A penetration viscometer. Glass Technology 6, 52–55.
  109. Duncan M.S., Schmerr N.C., Bertka C.M., Fei Y., (2018) Extending the solidus for a model iron-rich mar- tian mantle composition to 25 GPa. Geophys. Res. Lett. 45 (19), 10–211.
  110. Dyar M. D. (1985) A review of Mössbauer data on inorganic glasses; the effects of composition on iron valency and coor- dination. American Mineralogist, 70, 3–4, 304–316.
  111. Eilers vH. (1941) Die viskosität von emulsionen hochviskoser stoffe als funktion der konzentration. Kolloid-Zeitschrift 97:313-321.
  112. Einstein A. (1906) Eine neue Bestimmung der Molekuldimensionen. Ann. Phys. 19, 289.
  113. Elkins-Tanton L. T. (2012) Magma oceans in the inner solar system, Annu. Rev. Earth Planet. Sci., 40, 113–139.
  114. Elkins-Tanton L.T., Hager B.H., Grove T.L. (2004) Magmatic effects of the lunar late heavy bombardment. Earth Planet. Sci. Lett. 222 (1), 17–27.
  115. Etchepare J. (1972) Study by Raman spectroscopy of crystalline and glassy diopside. In Amorphous Materials (eds. R. W. Douglas and E. Ellis), pp. 337-346. Wiley-Interscience, New York.
  116. Eugster H. P. and Wones D. R. (1962) Stability relations of the ferruginous biotite, annite, J. Petrol., 3, 82–125. DOI: 10.1093/petrology/3.1.82
  117. Eyring H. (1935a) The activated complex in chemical reactions. J. Chem. Phys. 3, 107-115.
  118. Eyring H. (1935b) The activated complex and the absolute rate of chemical reactions. Chem. Rev. 17, 65-77.
  119. Farges F., Lefrère Y., Rossano S., Berthereau A., Calas G., and Brown G. E. (2004) The effect of redox state on the local structural environment of iron in silicate glasses: a com- bined XAFS spectroscopy molecular dynamics, and bond valence study. Journal of Non-Crystalline Solids, 344, 3, 176–188. DOI: 10.1016/j.jnoncrysol.2004.07.050
  120. Farnan I., Kohn S. C. and Dupree R. (1987) Study of the structural role of water in hydrous silica using cross-polarisation magic angle NMR. Geochim. Cosmochim. Acta 51, 2869-2874.
  121. Faroughi S.A. and Huber C. (2015) A generalized equation for rheology of emulsions and suspensions of deformable particles subjected to simple shear at low Reynolds number. Rheol Acta 54:85-108 DOI: 10.1007/s00397-014-0825-8
  122. Feig S. T., Koepke J., and Snow J. E.(2010) Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt, Con- trib Miner. Pet., 160, 551–568. DOI: 10.1007/s00410- 010-0493-3
  123. Ferec J., Ausias G., Heuzey M. C. and Carreau P. J. (2009) Modeling fiber interactions in semiconcentrated fiber suspensions. J. Rheol. 53, 49–72. DOI: 10.1122/1.3000732
  124. Feynman R.P., Leighton R.B., and Sands M.L. (1963) The Feynman lectures on physics: Addison-Wesley, Reading, MA.
  125. Frankel N. A. and Acrivos A. (1967) On the viscosity of a concentrated suspension of solid spheres. Chem. Eng. Sci. 22, 847–853. DOI: 10.1016/0009-2509(67)80149-0
  126. Frontoni A., Costa A., Vona A., Romano C. (2022) A comprehensive database of crystal-bearing magmas for the calibration of a rheological model. Scientific Data 9:247 DOI: 10.1038/s41597-022-01363-w
  127. Fujii T. and Bougault H. (1983) Melting relations of a magnesian abyssal tholeiite and the origin of MORBs. Earth Planet. Sci. Lett. 62:283–95
  128. Fujii T. and Scarfe C.M. (1985) Composition of liquids coexisting with spinel lherzolite at 10 kbar and the genesis of MORBs. Contrib. Mineral. Petrol. 90:18–28
  129. Fulcher G. S. (1925) Analysis of recent measurements of the viscosity of glasses. J. Amer. Ceram. Soc. 8, 339-355.
  130. Gaetan G. A. and Grove T. L. (1997) Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: Constraints on core formation in the Earth and Mars, Geochim. Cosmochim. Ac., 61, 1829–1846. DOI: 10.1016/S0016-7037(97)00033-1, 1997
  131. Gaillard F., Scaillet B., Pichavant M., and Beny J.-M. (2001) The effect of water and fO2 on the ferric-ferrous ratio of silicic melts, Chemical Geology, Elsevier, 174, 255-273 DOI: 10.1016/S0009-2541(00)00319-3
  132. Galeener F., Geissberger A., and Weeks R. (1984) On the thermal history of libyan desert glass. Journal of non-crystalline solids, 67(1-3):629–636.
  133. Gay E, Nelson P, Armstrong W (1969) Flow properties of suspensions with high solids concentration. AIChE Journal 15:815-822.
  134. Gerya T.V., Yuen D.A., (2003) RayleigheTaylor instabilities from hydration and melting propel “cold plumes” at subduction zones. Earth Planet. Sci. Lett. 212, 47–62.
  135. Geschwind Carl-Henry (1995) Becoming interested in experiments: American igneous petrologists and the Geophysical Laboratory, 1905 – 1965, Earth Sciences History, 14 (no. 1), 47 – 61,.
  136. Ghiorso M. S. (2004) An equation of state for silicate melts. II. Calibration of volumetric properties at 105 Pa. American Journal of Science 304.8-9, pp. 679–751. DOI: 10.2475/ajs.304.8-9.679
  137. Ghiorso, M. S., and Sack, R. O. (1995). Chemical mass transfer in magmatic processes: IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology, 119, 197–212.
  138. Ghiorso M. S., Hirschmann M. M., Reiners P. W., and Kress V. C. III (2002) A revision of MELTS aimed at improving calculationof phase relations and major element partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochemistry, Geophysics, Geosystems, 3(5).
  139. Ghiorso M.S., Gualda G.A.R. (2015) An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib Mineral Petrol 169, 53. DOI: 10.1007/s00410-015-1141-8
  140. Ghiorso M.S., Sack R.O. (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119 (2–3), 197–212.
  141. Gibbs G. V., Meagher E. P., Newton M. D., and Swanson D. K. (1981) A comparison of experimental and theoretical bond length and angle variations for minerals and inorganic solids, and molecules. Ch. 9 In Structure and Bonding in Crystals (ed. M. O'Keefe and A. Navrotsky), Academic Press. New York.
  142. Gingras M. K., MacMillan B. and Balcom B. J. (2002) Visualizing the internal physical characteristics of carbonate sediments with magnetic resonance imaging and petrography. Bulletin of Canadian Petroleum Geology, 50, 363–9.
  143. Giordano D., Dingwell D.B. (2003) Viscosity of hydrous Etna basalt: implications for Plinian-style basaltic eruptions. Bull. Volcan. 65, 8–14.
  144. Giordano D., Russell J.K., Dingwell D.B. (2008) Viscosity of magmatic liquids: a model. Earth and Planetary Science Letters 271, 123–134.
  145. Giuli G., Alonso-Mori R., Cicconi M. R., Paris E., Glatzel P., Eeckhout S. G., and Scaillet B. (2012) Effect of alkalis on the Fe oxidation state and local environment in peralkaline rhyolitic glasses. American Mineralogist, 97, 2–3, 468–475. DOI: 10.2138/am.2012.3888
  146. Giuli G., Paris E., Hess K.-U., Dingwell D. B., Cicconi M. R., Eeckhout S. G., ... Valenti, P. (2011) XAS determination of the Fe local environment and oxidation state in phonolite glasses. American Mineralogist, 96, 4, 631–636. DOI: 10.2138/am.2011.3464
  147. Goncharov, V. N., (1964) Dynamics of Channel Flow, 317 p., translated from Russian by Israel Program. Sci.Transl.,U.S.Dep.ofCommer.Off. of Tech. Serv., Washington, D.C.
  148. Gonnermann H. M. and Manga, M. (2007) The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech., 39, 321–356.
  149. Goranson R.W., (1936) Silicate-water systems: the solubility of water in albite-melt. Trans. Am. Geophys. Union 17, 257–259.
  150. Gottsmann J., Dingwell D. B. (2002) The thermal history of a spatter-fed lava flow: the 8-ka pantellerite flow of Mayor Island, New Zealand. Bull Volcanol (2002) 64:410–422
  151. Green D.H., Hibberson W.O., Jaques A.L. (1979) Petrogenesis of mid-ocean ridge basalts. In The Earth: Its Origin, Structure and Evolution, ed. MW McElhinney, pp. 265–99. New York: Academic
  152. Green D.H. and Ringwood A.E. (1967) The genesis of basaltic magmas. Contrib. Mineral. Petrol. 15:103–90
  153. Gregg T.K.P., Lopes M.C.R., Fagents S.A. (2022) Planetary Volcanism across the Solar System. Elsevier - ISBN: 978-0-12-813987-5
  154. Grove T.L., Chatterjee N., Parman S.W., Medard E. (2006) The influence of H2O on mantle wedge melting. Earth Planet. Sci. Lett. 249, 74–89.
  155. Gunter W. D., Myers J., and Wood J. R. (1979) The Shaw Bomb, an Ideal Hydrogen Sensor, Contrib. Mineral. Petrol., 70, 23–27.
  156. Guth E. and Gold O. (1938) On the hydrodynamical theory of the viscosity of suspensions. Phys. Rev. 53, 322–322.
  157. Hall J. (1805) Experiments on whinstone and lava. Trans. R. Soc. Edinburgh 5, 43
  158. Hall J. (1812) Account of a series of experiments, shewing the effects of compression in modifying the action of heat. Trans. R. Soc. Edinburgh 6, 71
  159. Hall J. (1826) On the consolidation of the strata of the Earth Trans. R. Soc. Edinburgh 18, 314
  160. Hammer J. E. (2006) Influence of fO2 and cooling rate on the kinetics and energetics of Fe-rich basalt crystallization, Earth Planet. Sc. Lett., 248, 618–637. DOI: 10.1016/j.epsl.2006.04.022
  161. Hannoyer B., Lenglet M., Dtirr J., and Cortes J. (1992) Spectroscopic evidence of octahedral iron (III) in soda-lime silicate glasses and crystals J. Non-Cryst. Solids 151, 209-216.
  162. Harris A. (2013) Thermal and remote sensing of active volcanoes. A User’s Manual – Cambridge University Press - 717 pp.
  163. Harrison T. M., and Watson E. B. (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content, Contrib. Mineral. Petrol., 84, 66–72.
  164. Hazen R. M. and Finger L. W. (1982) Comparative Crystal Chemistry: Temperature, Pressure, Composition, and the Variation of Crystal Structure. Wiley and Sons, New York.
  165. Helffrich G., and Wood B. J. (2001) The Earth’s mantle, Nature, 412(6846), 501–507. DOI: 10.1038/35087500
  166. Henderson G. S., Fleet M. E., and Bancroft G. M. (1984) An X-ray scattering study of vitreous KFeSi308 and NaFeSi308 and reinvestigation of vitreous SiO2using quasicrystalline modelling. J. Non-Cryst. Solids 68, 333-349.
  167. Henderson P, Nolan J, Cunningham GC, Lowry RK (1985) Structural controls and mechanisms of diffusion in natural silicate melts. Contrib Mineral Pertrol 89:263-272
  168. Henderson G.S., Calas G., Stebbins J.F. (2006) The structure of silicate glasses and melts. Elements 2 (5), 269–273.
  169. Herschel W, Bulkley R (1926) Measurement of consistency as applied to rubber-benzene solutions. In Book Measurement of consistency as applied to rubber-benzene solutions. Vol 26. Editor, p 621-633.
  170. Herzberg C. T., Fyfe W. S., and Carr M. J. (1983) Density con- straints on the formation of the continental Moho and crust. Contributions to Mineralogy and Petrology, 84, 1–5.
  171. Hess K.U., Dingwell D.B. (1996) Viscosities of hydrous leucograni- tic melts: a non-Arrhenian model. Am Mineral 81:1297–1300
  172. Hess K. U., Cordonnier B., Lavallee Y., and Dingwell D. B. (2007) High-load, high-temperature defor- mation apparatus for synthetic and natural silicate melts. Rev. Sci. Instrum., 78(7), article no. 075102.
  173. Hewins R. H. (1991) Retention of sodium during chondrule formation. Geochim. Cosmochim. Acta 55, 935–42.
  174. Heymann L., Peukert S. and Aksel N. (2002) On the solid-liquid transition of concentrated suspensions in transient shear flow. Rheol. Acta 41, 307–315. DOI: 10.1007/s00397-002-0227-1
  175. Higgins M. D. (2006) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press. www.cambridge.org.
  176. Hildreth W. (1983) The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska. J. Volc. Geotherm. Res. 18:1–56.
  177. Hirose K, Kushiro I. (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet. Sci. Lett. 114:477–89
  178. Hirschmann M.M. (2000) Mantle solidus: experimental constraints and the effect of peridotite composition. Geochem. Geophys. Geosyst. 1.
  179. Hirschmann M.M. (2006) Water, melting, and the deep earth H2O cycle. Annu. Rev. Earth Planet. Sci. 34, 629–653.
  180. Hirth G., Kohlsetdt D.L. (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108.
  181. Hoffman R. L. (1972) Discontinuous and dilatant viscosity behavior in concentrated suspensions. 1. Observation of a flow instability. T. Soc. Rheol. 16, 155–173. DOI: 10.1122/1.549250
  182. Holtz F., Dingwell D. B., and Behrens H. (1993) Effects of F, B2O3,and P2O5 on the solubility of water in haplogranitic melts compared to natural silicate melts. Contrib. Mineral. Petrol. 113, 492-501.
  183. Holtz F., Behrens H., Dingwell D.B., Johannes W. (1995) Water solubility in haplogranitic melts. Compositional, pressure and temperature dependence. Am. Mineral. 80, 94-108.
  184. Holtz F., Roux J., Behrens H., Pichavant M., (2000) Water solubility in silica and quartz feldspathic melts. Am. Mineral. 85, 682–686.
  185. Hoover S. R., Cashman K. V., and Manga M. (2001) The yield strength of subliquidus basalts— experimental results. J. Volcanol. Geotherm. Res., 107, 1–18.
  186. Howard C.J., Sabine T.M., Dickson F. (1991) Structural and thermal parameters for rutile and anatase. Acta Cryst. B47, 462–467.
  187. Hui H., Zhang Y. (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochimica et Cosmochimica Acta 71, 403–416.
  188. Iacono-Marziano G, Morizet Y, Le Trong E, Gaillard F (2012) New experimental data and semi-empirical parameterization of H2O– CO2 solubility in mafic melt. Geochim Cosmochim Acta 97:1–23
  189. Ihinger P.D., Zhang Y.X., Stolper E.M., (1999) The speciation of dissolved water in rhyolitic melt. Geochim. Cosmochim. Acta 63, 3567–3578.
  190. Ispas S., Benoit M., Jund P., and Jullien R. (2002) Structural properties of glassy and liquid sodium tetrasilicate: comparison between ab initio and classical molecular dynamics simulations. J. Non-Cryst. Solids 307, 946-955.
  191. Jabraoui H., Vaills Y., Hasnaoui A., Badawi M., Ouaskit S. (2016) Effect of sodium oxide modifier on structural and elastic properties of silicate glass, J. Phys. Chem. B. 120 (2016) 13193–13205. DOI: 10.1021/acs.jpcb.6b09664
  192. Jambon A. (1982) Tracer diffusion in granitic melts: experimental results for Na, Rb, Cs, Ca, Sr, Ba, Ce, Eu to 1300°C and a model of calculation. J Geophys Res 87:10797-10810
  193. Jambon A., and Shelby M. P. (1980) Helium diffusion and solubility in obsidians and basaltic glass in the range 200–300°C, Earth Planet. Sci. Lett., 51, 206–214.
  194. Jambon A., and SemetM. P. (1978) Lithrium diffusion in silicate glasses of albite, orthoclase, and obsidian composition: An ion-microprobe determination, Earth Planet. Sci. Lett., 37, 445–450.
  195. Jaques A.L., Green D.H. (1980) Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contrib. Mineral. Petrol. 73:287–310
  196. Jeffery G. B. (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161–179. DOI: 10.1098/rspa.1922.0078
  197. Jeffrey D. J. and Acrivos A. (1976) The rheological properties of suspensions of rigid particles. AIChE J. 23, 417–432.
  198. Jégo S., Pichavant M., and Mavrogenes J. A. (2010) Controls on gold solubility in arc magmas: An experimental study at 1000 ◦C and 4 kbar, Geochim. Cosmochim. Ac., 74, 2165–2189. DOI: 10.1016/J.GCA.2010.01.012
  199. Ji S., and XiaB. (2002) Rheology of Polyphase Earth Mate- rials, 300 pp., Polytech. Int. Press, Que ́bec, Que., Canada.
  200. Johannes W. and Holtz F. (1996) Petrogenesis and experimental petrology of granitic rocks. Springer-Verlag Berlin Heidelberg 335 pp.
  201. Johannsen A. (1932) A descriptive petrography of igneous rocks, vol2. University of Chicago Press, Chicago, 428 pp
  202. Johnson K.T.M. and Kushiro I. (1992) Segregation of high pressure partial melts from peridotite using aggregates of diamond: a new experimental approach. Geophys. Res. Lett. 19:1703–6
  203. Jones R. H., Villeneuve J. and Libourel G. (2017) Thermal histories of chondrules: Petrologic observations and experimental constraints. Chondrules and Protoplanetary Disk 57–90. DOI: 10.1017/9781108284073.003
  204. Jugo P. J., Wilke M., and Botcharnikov R. E. (2010) Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity, Geochim. Cosmochim. Ac., 74, 5926–5938. DOI: 10.1016/j.gca.2010.07.022
  205. Kaaden K. E. V. & McCubbin F. M. (2015) Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle. J Geophys Res Planets 120, 195–209
  206. Kaaden K. E. V. and McCubbin F. M. (2016) The origin of boninites on Mercury: An experimental study of the northern volcanic plains lavas. Geochim Cosmochim Ac 173, 246–263
  207. Karato S., (2011) Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet. Sci. Lett. 301, 413-423.
  208. Karato S., Bercovici D., Leahy G., Richard G., Jing Z. (2006) The transition-zone water filter model for global material circulation: where do we stand? Earth’s Deep Water Cycle 289-313.
  209. Kelley K. A. and Cottrell E. (2009) Water and the oxidation state of subduction zone magmas, Science, 325, 605–607. DOI: 10.1126/science.1174156
  210. Kennedy G.C., Wasserburgh G.J., Heard H.C., Newton R.C. (1962) The upper three-phase region in the system SiO2-H2O. Am. J. Sci. 260, 501–521.
  211. Kerr R. C. and Lister J. R. (1991) The effects of shape on crystal settling and on the rheology of magmas. J. Geol., 99, 457–467.
  212. Keszthelyi, L., & Self, S. (1998). Some physical requirements for the emplacement of long basaltic lava flows. Journal of Geophysical Research, 103(B11), 27,447–27,464. DOI: 10.1029/98JB00606
  213. Keszthelyi L., and Self, S. (1998) Some physical requirements for the emplacement of long basaltic lava flows. Journal of Geophysical Research, 103(B11), 27,447–27,464. DOI: 10.1029/98JB00606
  214. Kiefer W.S., Filiberto J., Sandu C., Li Q. (2015) The effects of mantle composition on the peridotite solidus: implications for the magmatic history of Mars. Geochim. Cosmochim. Acta 162, 247–258.
  215. Kilinc A., Carmichael I. S. E., Rivers M. L., and Sack R. O. (1983) The ferric-ferrous ratio of natural silicate liquids equilibrated in air, Contrib. Mineral. Petrol., 83, 136–140. DOI: 10.1007/BF00373086
  216. King E. A. (1982) Refractory residues, condensates and chondrules from solar furnace experiments. Proc. 13th Lunar Planet. Sci. Conf. J. Geophys. Res. 87, A429–34.
  217. Klein C., and Philpotts A. R. (2018) Mineralogia e petrografia. Prima edizione condotta sulla seconda edizione inglese a cura di Gasparotto G. e Braga R. Zanichelli editore
  218. Klein E.M., Langmuir C.H. (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92:8089–115
  219. Klein J, Mueller SP, Helo C, Schweitzer S, Gurioli L, Castro JM (2018) An expanded model and application of the combined effect of crystal-size distribution and crystal shape on the relative viscosity of magmas. Journal of Volcanology and Geothermal Research 357:128-133.
  220. Klimm K., Kohn S. C., and Botcharnikov R. E. (2012b) The dissolu- tion mechanism of sulphur in hydrous silicate melts. II: Sol- ubility and speciation of sulphur in hydrous silicate melts as a function of fO2 , Chem. Geol., 322–323, 250–267. DOI: 10.1016/j.chemgeo.2012.04.028
  221. Klimm K., Kohn S. C., O’Dell L. A., Botcharnikov R. E., and Smith M. E. (2012a) The dissolution mechanism of sul- phur in hydrous silicate melts. I: Assessment of analyti- cal techniques in determining the sulphur speciation in iron- free to iron-poor glasses, Chem. Geol., 322–323, 237–249. DOI: 10.1016/j.chemgeo.2012.04.027
  222. Klöß G.H., (2000) Dichte"uktuationen natürlicher Gläser (Dissertation) University of Jena.
  223. Kohlstedt D., Keppler H., Rubie D., (1996) Solubility of water in the a, b and g phases of (Mg, Fe)2SiO4. Contrib. Mineral. Petrol. 123, 345–357.
  224. Kolzenburg S, Giodano D, Hess KU, Dingwell DB (2018a) Shear Rate-Dependent Disequilibrium Rheology and Dynamics of Basalt Solidification. Geophysical Research Letters 45:6466-6475 DOI: 10.1029/2018GL077799
  225. Kolzenburg S, Giordano D, Di Muro A, Dingwell D (2018b) Equilibrium Viscosity and Disequilibrium Rheology of a high Magnesium Basalt from Piton De La Fournaise volcano, La Reunion, Indian Ocean, France. Annals of Geophysics 61:18.
  226. Kolzenburg S, Hess K-U, Berlo K and Dingwell DB (2020) Disequilibrium Rheology and Crystallization Kinetics of Basalts and Implications for the Phlegrean Volcanic District. Front. Earth Sci. 8:187 DOI: 10.3389/feart.2020.00187
  227. Kolzenburg S., Chevrel M.O., Dingwell DB. (2022) Magma / Suspension Rheology. Reviews in Mineralogy & Geochemistry Vol. 87 pp. 639-720.
  228. Kolzenburg S., Giordano D., Di Muro A., and Dingwell D. B. (2019) Equilibrium viscosity and disequilibrium rheology of a high magnesium basalt from piton De La Fournaise volcano, La Reunion, Indian Ocean, France. Ann. Geophys. 62:218. DOI: 10.4401/ag-7839.
  229. Kolzenburg S., Giordano D., Thordarson T., Höskuldsson A., and Dingwell D. B. (2017) The rheological evolution of the 2014/2015 eruption at Holuhraun, central Iceland. Bull. Volcanol. 79:45. DOI: 10.1007/s00445-017- 1128-6
  230. Kress V. C. and Carmichael I. S. E. (1991). The compressibility of silicate liquids containing Fe2O3 and the effect of composition temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology, 108(1-2):82–92. DOI: 10.1007/bf00307328.
  231. Kress V.C. and Ghiorso M.S. (1993) Multicomponent diffusion in MgO–Al2O3–SiO2 and CaO–MgO–Al2O3–SiO2 melts. Geochim. Cosmochim. Acta 57, 4453–4466.
  232. Kress V. C. and Carmichael I. S. E. (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol., 108, 82–92 DOI: 10.1007/BF00307328, 1991
  233. Krieger I.M., Dougherty T.J. (1959) A mechanism for non‐Newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology 3:137-152.
  234. Krieger I. M. (1972) Rheology of monodisperse latices. Adv. Colloid Interface 3, 111–136. DOI: 10.1016/0001-8686(72)80001-0
  235. Kushiro I, Hirose K. (1992) Experimental determination of composition of melt formed by equilibrium partial melting of peridotite at high pressures using aggregates of diamond grains. Proc. Jpn. Acad. Ser. B 68:63–68
  236. Kushiro I, Syono Y, Akimoto S. (1968) Melting of a peridotite nodule at high pressures and high water
  237. Kushiro I., Yoder H.S. (1964) Experimental studies on the basalt-eclogite transformation. Carnegie Inst. Wash.Yearb.63:108–14
  238. Kushiro I., Yoder HS. (1966) Anorthite-forsterite and anorthite-enstatite reactions and their bearing on the basalt-eclogite transformation. J. Petrol. 7:337–62
  239. Kushiro I. (1975) On the nature of silicate melt and its significance in magma genesis: Regularities in the shift of liquidus boundaries involving olivine pyroxene, and silica materials. Amer. J. Sci. 275, 411-431.
  240. Kushiro I. (1965) The liquidus relations in the system forsterite-CaAl2SiO6-silica and forsterite-nepheline- silica at high pressures. Carnegie Inst. Wash. Yearb. 64:103–9
  241. Kushiro I. (1968) Compositions of magmas formed by partial zone melting of the Earth’s upper mantle. J. Geophys. Res. 73:619–34
  242. Kushiro I. (1973) Origin of some magmas in oceanic and circum-oceanic regions. Tectonophysics 17:211–22
  243. Kushiro I. (1976) Change in viscosity and structure of melt of NaAlSi2O6 composition at high pressures. J. Geophys. Res. 81:6347–50
  244. Kushiro I. (1996) Partial melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond. In Earth Processes: Reading the Isotopic Code, ed. A Basu, SR Hart, Geophys. Monogr. 95:109–22. Washington, DC: Am. Geophys. Union
  245. Kushiro I. (2001) Partial melting experiments on peridotite and origin of mid-ocean ridge basalt. Annu. Rev. Earth Planet. Sci. 29:71–107
  246. Kushiro I. (1980). Viscosity, density, and structure of silicate melts at high pressures, and their petrological applications. In Physics of Magmatic Processes, ed. R.B. Hargraves. Princeton: Princeton University Press, 93–120.
  247. Kushiro I. (1990) Partial melting of mantle wedge and evolution of island arc crust. J. Geophys. Res. Solid Earth 95, 15929–15939.
  248. Kushiro I., and Yoder H.S., (1966) Anorthite–forsterite and anorthite–enstatite reactions and their bearing on the basalt– eclogite transformation. Journal of Petrology, 7, 337–362.
  249. Larkin P. (2011) Infrared and Raman spectroscopy. Principles and spectral interpretation. Elsevier ISBN: 978-0-12-386984-5
  250. Lee S. K. and Stebbins J. E (1999) The degree of aluminum avoidance in aluminum silicate glasses. Amen Mineral. 84, 937-945.
  251. Lee S. K. and Stebbins J. F. (2003) The distribution of sodium ions in aluminosilicate glasses: A high-field Na-23 MAS and 3Q MAS NMR study. Geochim. Cosmochim. Acta 67, 1699-1710.
  252. Lee C. T. A., Luffi P., Le Roux V., Dasgupta R., Albaréde F., and Leeman W. P. (2010) The redox state of arc mantle using Zn/Fe systematics, Nature, 468, 681–685. DOI: 10.1038/nature09617
  253. Lee C.-T. A., Leeman W. P., Canil D., Zheng-Xue A., and Li A. (2005) Similar V/Sc Systematics in MORB and Arc Basalts: Implications for the Oxygen Fugacities of their Mantle Source Regions, J. Petrol., 46, 2313–2336. DOI: 10.1093/petrology/egi056
  254. Lee C.-T. A., Luffi P., Chin E. J., Bouchet R., Dasgupta R., Morton D. M., Le Roux V., Yin Q., and Jin D. (2012) Copper systematics in arc magmas and implications for crust-mantle differentiation, Science, 336, 64–68. DOI: 10.1126/science.1217313
  255. Lejeune A.M., Richet P. (1995) Rheology of crystal-bearing silicate melts: an experimen- tal study at high viscosities. J. Geophys. Res. 100:4215–29.
  256. Lesher C.E., Spera F.J., (2015) Thermodynamic and Transport Properties of Silicate Melts and Magma. In: Sigurdsson, H., Houghton, B., Rymer, H., Stix, J., McNutt, S. (Eds.), The Encyclopedia of Volcanoes, pp. 113–141. ISBN: 9780123859389
  257. Lierenfeld M. B., Zajacz Z., Bachmann O., and Ulmer P. (2018) Sulfur diffusion in dacitic melt at various oxidation states: Implications for volcanic degassing, Geochim. Cosmochim. Ac. , 226, 50–68, DOI: 10.1016/j.gca.2018.01.026
  258. Liu Z, Pandelaers L, Blanpain B, Guo M (2017) Viscosity of Heterogeneous Silicate Melts: Assessment of the Measured Data and Modeling. ISIJ International 57:1895-1901.
  259. Liu Y., Behrens H., Zhang X., (2004) The speciation of dissolved H2O in dacitic melt. Am. Mineral. 89, 277–284.
  260. Liu Z., Park J., Karato S. (2016) Seismological detection of low velocity anomalies surrounding the mantle transition zone in Japan subduction zone. Geophys. Res. Lett. 43.
  261. London D., Morgan G. B., Babb H.A., and Loomis J. L. (1993) Behavior and effects of phosphorus in the system Na20-KzO-A1203-SiO2-P2Os-H20at 200 MPa (H20). Contrib. Mineral. Petrol. 113, 450-465.
  262. Lowry R.K., Henderson P., Nolan J. (1982) Tracer diffusions of some alkali, alkaline-earth and transition element ions in a basaltic and andesitic melt, and the implications concerning melt structure. Contrib Mineral Petrol 80:254-261
  263. Luth R. W., Virgo D., Boyd F. R., and Wood B. J. (1990) Ferric iron in mantle-derived garnets – Implications for thermobarometry and for the oxidation state of the mantle, Contrib. Mineral. Petrol., 104, 56–72, DOI: 10.1007/BF00310646, 1990
  264. Mader H.M., Llewellin E.W., Mueller S.P. (2013) The rheology of two-phase magmas: A review and analysis. Journal of Volcanology and Geothermal Research 257 (2013) 135–158
  265. Magaritz M., and Hofmann A. W. (1978) Diffusion of Sr, Ba and Na in obsidian, Geochim. Cosmochim. Acta, 42, 595–605.
  266. Malfait W. J., C. Sanchez-Valle P. Ardia E. Medard and Lerch P. (2011) Amorphous Materials: Properties, Structure, and Durability: Compositional dependent compressibility of dissolved water in silicate glasses. American Mineralogist 96.8-9, pp. 1402– 1409. DOI: 10.2138/am.2011.3718.
  267. Malfait W. J., R. Seifert S. Petitgirard M. Mezouar and C. Sanchez-Valle (2014) The density of andesitic melts and the compressibility of dissolved water in silicate melts at crustal and upper mantle conditions. Earth and Planetary Science Letters 393, pp. 31–38. DOI: 10.1016/j.epsl.2014.02.042
  268. Mallock A. (1896) Determination of the viscosity of water, Proc. R. Soc. London, 1888; Experiments on fluid viscosity, Philos. Trans. R. Soc.,
  269. Manley R. St J. & Mason S. G. (1955) Particle motions in sheared suspensions. 3. Further observations on collisions of spheres. Can. J. Chem. 33, 763–773. DOI: 10.1139/v55-094
  270. Manning D. A. C. (1981) The effect of fluorine on liquidus phase relationships in the system Qz- Ab-Or with excess water at 1 kb. Contrib. Mineral. Petrol. 76, 206-215.
  271. Maron SH, Pierce PE (1956) Application of Ree-Eyring generalized flow theory to suspensions of spherical particles. Journal of colloid science 11:80-95
  272. Marschallinger R. (2001) Three-dimensional reconstruction and visualization of geological materials with IDL – examples and source code. Computers & Geosciences, 27, 419–26.
  273. Marsh B. D. (1988a) Crystal capture, sorting, and retention in convecting magma. Geological Society of America Bulletin, 100, 1720–37.
  274. Marsh B. D. (1988b) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization I. Theory. Contributions to Mineralogy and Petrology, 99, 277–291.
  275. Marsh B.D. (1981) On the crystallinity, probably occurrence, and rheology of lava and magma. Contributions to Mineralogy and Petrology 78, 85-98.
  276. Martel C., Pichavant M., Holtz F., Scaillet B., Bourdier J.L., and Traineau H. (1999) Effects of f O2 and H2O on andesite phase relations between 2 and 4 kbar, J. Geophys. Res.-Sol. Ea., 104, 29453–29470. DOI: 10.1029/1999JB900191
  277. Matsukage K.N., Jing Z., Karato S., (2005) Density of hydrous silicate melt at the conditions of earth’s deep upper mantle. Nature 438, 488–491.
  278. Mavrogenes J. A. and O’Neill H. S. C. (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas, Geochim. Cosmochim. Ac., 63, 1173– 1180, DOI: 10.1016/S0016-7037(98)00289-0
  279. Maxwell J.C., (1868) On the dynamical theory of gases. Philos. Mag. 35, 129–145. 185–217.
  280. McCanta, M. C., Dyar, M. D., Rutherford, M. J., and Delaney, J. S.(2004) Iron partitioning between basaltic melts and clinopyroxene as a function of oxygen fugacity, Am. Mineral., 89, 1685–1693. DOI: 10.2138/am-2004-11-1214
  281. McMillan P. E and Remmele R. L. (1986) Hydroxyl sites in SiO2 glass: A note on infrared and Raman spectra. Amer. Mineral. 71,772-778
  282. McMillan P. F., Poe B. T., Gillet P., and Reynard B. (1994) A study of SiO2 glass and supercooled liquid to 1950 K via high-temperature Raman spectroscopy. Geochim. Cosmochim. Acta 58, 3653-3664.
  283. Métrich N., Berry A. J., O’Neill H. S. C., and Susini J. (2009) The oxi- dation state of sulfur in synthetic and natural glasses determined by X-ray absorption spectroscopy, Geochim. Cosmochim. Ac., 73, 2382–2399. DOI: 10.1016/j.gca.2009.01.025
  284. Métrich N., Susini J., Foy E., Farges F., Massare D., Sylla L., et al. (2006) Redox state of iron in peralkaline rhyolitic glass/melt: X-ray absorption micro-spectroscopy experiments at high temperature. Chemical Geology, 231, 4, 350–363. DOI: 10.1016/j.chemgeo.2006.02.001
  285. Mezner, T.G. (2014) The Rheology Handbook, 4th Edition Hanover: Vincentz Network.
  286. Misiti V., Iarocci A. (2008) Strumentazioni nel campo della petrologia sperimentale. Quaderni di geofisica 59 ISSN 1590-2595.
  287. Mitchell R. H. (1991) Coexisting glasses occurring as inclusions in leucite from lamproites: Examples of silicate liquid immiscibility in ultrapotassic magmas. Mineral. Mag. 55, 197-202.
  288. Moitra P., Gonnermann H.M. (2015) Effects of crystal shape- and size-modality on magma rheology. Geochemistry, Geophysics, Geosystems, 16, 1-26 DOI: 10.1002/2014GC005554
  289. Moore G., Righter K., Carmichael I.S.E. (1995) The effect of dissolved water on the oxidation state of iron in natural silicate liquids. Contrib Mineral Petrol 120: 170-179
  290. Moore G. and Carmichael I. S. E (1998) The hydrous phase equi- libira (to 3 kbar) of an andesite and basaltic andesite from western Mexico: Constraints on water content and conditions of phenocryst growth, Contrib. Mineral. Petrol., 130, 304–319. DOI: 10.1007/s004100050367
  291. Moore P.B., Louisnathan S.J. (1969) The crystal structure of fresnoite, Ba2(TiO)Si2O7. Z. Kristall. 130, 438–448.
  292. Moran G. and Howe R.F. (2000) Nuclear Magnetic Resonance of Geological Materials and Glasses. Encyclopedia of Analytical Chemistry R.A. Meyers (Ed.) Copyright. John Wiley & Sons Ltd
  293. Morey G. W. (1918) J. Engineering. Club, Philadelphia, 1.
  294. Morey G. W. and Fenner C. N. (1917) J. Am.. Chem. Soc. 39, 1173.
  295. Moynihan CT, Easteal AJ, DeBolt MA, Tucker J (1976) Depen- dence of the fictive temperature of glass on cooling rate. J Am Ceram Soc 59:12–16.
  296. Muan A. (1958) Phase equilibria at high temperatures in oxide systems involving changes in oxidation states, Am. J. Sci., 256, 171–207 DOI: 10.2475/ajs.256.3.171
  297. Muan A. and Osborn E. F. (1956) Phase Equilibria at Liq- uidus Temperatures in the System MgO-FeO-Fe2O3-SiO2, J. Am. Ceram. Soc., 39, 121–140 DOI: 10.1111/j.1151- 2916.1956.tb14178.x
  298. Mueller S., Llewellin E. W. and Mader H. M. (2010) The rheology of suspensions of solid particles. Philos. Trans. R. Soc. Lond. A 466, 1201–1228.
  299. Mungall J. E., D. B. Dingwell and M. Chaussidon (1999) Chemical diffusivities of 18 trace elements in granitoid melts, Geochim. Cosmochim. Acta, 63, 2599–2610.
  300. Murdoch J. B., Stebbins J. E, and Carmichael I. S. E. (1985) High-resolution 298iNMR study of silicate and aluminosilicate glasses: The effect of.network-modifying cations. Amer. Mineral. 70, 332-343.
  301. Murri M., Domeneghetti M.C., Fioretti A., Nestola F., Vetere F., Perugini D., Pisello A., Faccenda M. (2019) Cooling history and emplacement of a pyroxenitic lava as proxy for understanding Martian lava flows. Scientific Report, 9, 17051. DOI: 10.1038/s41598-019-53142-0
  302. Mysen B. O. and Richet, P (2005) Silicate Glasses and Melts Properties and Structures. Developments in Geochemistry 10. Elsevier
  303. Mysen B. O. and Richet, P (2019) Silicate Glasses and Melts second Edition. Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands DOI: 10.1016/C2018-0-00864-6
  304. Mysen B. O. and Virgo D. (1978) Influence of pressure, temperature, and bulk composition on melt structures in the system NaAlSi206-NaFe3+Si2O6 . Amer. J. Sci. 278, 1307-1322.
  305. Mysen B. O. and Virgo D. (1986a). Volatiles in silicate melts at high pressure and temperature. 1, Interaction between OH groups and Si4+, Al3+, Ca2+, Na+ and H+ Chem. Geol. 57, 303-331.
  306. Mysen B. O. and Virgo D. (1986b). Volatiles in silicate melts at high pressure and temperature. 2, Water in melts along the join NaAlO2-SiO2 and a comparison of solubility mechanisms of water and fluorine. Chemical Geology 57, 333-358.
  307. Mysen, B. O. (2006) Redox equilibria of iron and silicate melt structure: Implications for olivine/melt element parti- tioning, Geochim. Cosmochim. Ac., 70, 3121–3138. DOI: 10.1016/j.gca.2006.03.014
  308. Mysen B. O. (2006). The structural behavior of ferric and fer- rous iron in aluminosilicate glass near meta-aluminosilicate joins. Geochimica et Cosmochimica Acta, 70, 9, 2337–2353. DOI: 10.1016/j.gca.2006.01.026
  309. Mysen B. O. (1976) The role of volatiles in silicate melts: Solubility of carbon dioxide and water in feldspar, pyroxene, and feldspathoid melts to 30 kb and 1625 degrees C. American Journal of Science, 276(8), 969–996.
  310. Mysen B. (2013) Effects of fluid and melt density and structure on high-pressure and high-temperature experimental studies of hydrogen isotope partitioning between coexisting melt and aqueous fluid. Am. Mineral. 98, 1754–1764.
  311. Mysen B.O., (2007) The solution behavior of H2O in peralkaline aluminosilicate melts at high pressure with implications for properties of hydrous melts. Geochim. Cosmochim. Acta 71, 1820–1834.
  312. Mysen B.O., Cody G.D. (2004) Solubility and solution mechanism of H2O in alkali silicate melts and glasses at high pressure and temperature. Geochim. Cosmochim. Acta 68, 5113–5126.
  313. Namur O., Collinet M., Charlier B., Grove T.L., Holtz F., McCammon C., (2016) Melting processes and mantle sources of lavas on Mercury. Earth Planet. Sci. Lett. 439, 117–128.
  314. Narayanaswamy OS (1971) A model of structural relaxation in glass. J Am Ceram Soc 54:491–498
  315. Narayanaswamy OS (1988) Thermorheological simplicity in the glass transition. J Am Ceram Soc 71:900–904
  316. Nernst W. (1888) Zur Kinetik der in Lösung befindtlicher Ktirper. Erste Abhandlung, Theorie der Diffusion. Z. Phys. Chem. 2, 613-637.
  317. Neuville D.R. and Richet P. (1991) Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets. Geochimica et Cosmochimica Acta, 55, 1011–1019.
  318. Newman S., Lowenstern J.B., (2002) VolatileCalc: a silicate melt-H2O–CO2 solution model written in Visual Basic for excel. Computational Geosciences 28, 597–604
  319. Newman S., Lowenstern J.B., (2002) VolatileCalc: a silicate melt-H2O–CO2 solution model written in Visual Basic for excel. Computational Geosciences 28, 597–604.
  320. Newton I. (1967) Philosophiae naturalis principia mathematica. New York
  321. Ni H., and Zhang Y. (2008) H2O diffusion models in rhyolitic melt with new high pressure data, Chem. Geol., 250, 68–78.
  322. Ni H., H. Hui and Steinle-Neumann G. (2015) Transport properties of silicate melts, Rev. Geophys., 53, 715–744 DOI: 10.1002/2015RG000485.
  323. Nicholls I.A., Ringwood A.E. (1972) Production of silica-saturated tholeiitic magmas in island arcs. Earth Planet. Sci. Lett. 17:243–46
  324. Nowak M., Behrens H., (1995) The speciation of water in haplogranitic glasses and melts determined by in-situ near infrared spectroscopy. Geochim. Cosmochim. Acta 59, 3445–3450.
  325. Nowak M., Behrens H., (1997) An experimental investigation on diffusion of water in haplogranitic melts. Contrib. Mineral. Petrol. 126, 365–376.
  326. Nowak M., Behrens H., (2001) Water in rhyolitic magmas: getting a grip on a slippery problem. Earth Planet. Sci. Lett.184, 515–522.
  327. O’Hara MJ. (1965). Primary magmas and the origin of basalt. Scot. J. Geol. 1:19–40
  328. O’Hara MJ. (1968). The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth-Sci. Rev. 4:69–133
  329. Ochs III F.A., Lange R.A., (1999) The density of hydrous magmatic liquids. Science 283, 1314–1317.
  330. Ohtani E., Maeda M., (2001) Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Earth Planet. Sci. Lett. 193, 69–75.
  331. Okumura S., and Nakashima S. (2004) Water diffusivity in rhyolitic glasses as determined by in situ IR spectrometry, Phys. Chem. Miner., 31, 183–189.
  332. Osborn E. F. (1959) Role of oxygen pressure in the crystallization and differentiation of basaltic magma, Am. J. Sci., 257, 609–647. DOI: 10.2475/ajs.257.9.609
  333. Ottonello G., Richet P., (2014) The solvation radius of silicate melts based on the solubility of noble gases and scaled particle theory. J. Chem. Phys. 140044506. DOI: 10.1063/1.4862737
  334. Ottonello G., Richet P., Papale P., (2018) Bulk solubility and speciation of H2O in silicate melts. Chem. Geol. 479, 176–187.
  335. Oxburgh E. R. (1990). Some thermal aspects of granulite history. In Granulites and Crustal Evolution, ed. D. Vielzeuf & Ph. Vidal. Dordrecht: Kluwer, 569–580.
  336. Pabst W., Gregorova E. and Berthold C. (2006) Particle shape and suspension rheology of short-fiber systems. J. Eur. Ceram. Soc. 26, 149–160.
  337. Paige D. A., S. E. Wood and Vasavada A. R. (1992) The thermal stability of water ice at the poles of Mercury, Science, 258(5082), 643–646.
  338. Palin M.R. Santosh M., Cao W. Li S.S. Hernández-Uribe D., Parsons A. (2017) Secular change and the onset of plate tectonics on Earth. Earth Science Reviews 207, 103172. DOI: 10.1016/j.earscirev.2020.103172
  339. Palot M., Jacobsen S., Townsend J., Nestola F., Marquardt K., Miyajima N., Harris J., Stachel T., McCammon C., Pearson D., (2016) Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion. Lithos 265, 237-243.
  340. Papale, P., Moretti R., Barbato D., (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chemical Geology 229, 78–95.
  341. Papale P., Moretti, R., Barbato, D., 2006. The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chemical Geology 229, 78–95.
  342. Parfitt E.A. and Wilson L. (2008). Fundamental of physical volcanology. Blackwell publishing Ltd pp. 230
  343. Pauling L. (1929) The principles determining the structure of complex ionic crystals. J. Amer. Chem. Soc. 51, 1010-1026.
  344. Pauling L. (1960) The Nature of the Chemical Bond. Cornell University Press. Ithaca, NY.
  345. Pearson D., Brenker F., Nestola F., McNeill J., Nasdala L., Hutchison M., Matveev S., Mather K., Silversmit G., Schmitz S., (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221–224.
  346. Peccerillo A. (2003) Elementi di Petrografia ignea e metamorfica. Morlacchi Editore (174 pp.)
  347. Petford N. (2003) Rheology of granitic magmas during ascentand emplacement, Annu. Rev. Earth Planet. Sci., 31, 399–427 DOI: 10.1146/annurev.earth.31.100901.141352
  348. Petrelli M., El Omari K., Spina L., Le Guer Y., La Spina G., Perugini D. (2018) Timescales of water accumulation in magmas and implications for short warning times of explosive eruptions. Nature Communications, 9, 770 DOI: 10.1038/s41467-018-02987-6
  349. Philpotts A. R. and Ague J. J. (2022) Principles of Igneous and Metamorphic Petrology. ISBN 9781108631419
  350. Pichavant M., Herrera J. V., Boulmier S., Brigueu L., Joron J.L., Juteau L. M., Michard A., Sheppard S. M. E, Treuil M., and Vemet M. (1987) The Macusani glasses, SE Peru: Evidence of chemical fractionation of peraluminous magmas. In: Magmatic Processes: Physicochemical Principles (ed. B. O. Mysen), pp. 359-374. Geochemical Society. University Park, PA.
  351. Pichavant M., Martel C., Bourdier J., and Scaillet B.(2002) Physical conditions, structure, and dynamics of a zoned magma chamber: Mount Pelée (Martinique, Lesser Antilles Arc), J. Geophys. Res., 107, 2093, DOI: 10.1029/2001JB000315,
  352. Pichavant M., Scaillet B., Pommier A., Iacono-Marziano G., and Cioni R.(2014) Nature and Evolution of Primitive Vesuvius Magmas: an Experimental Study, J. Petrol., 55, 2281–2310. DOI: 10.1093/petrology/egu057
  353. Pinkerton H, Stevenson RJ. 1992. Methods of determining the rheological properties of magmas at sub liquidus temperatures. J. Vol- canol. Geotherm. Res. 53:47, 66
  354. Pisello A., Corezzi S., Behrens, H., Comez L., Iezzi G., Vetere F., Perugini D. Brillouin spectroscopy on natural silicate glasses: a new tool for earth and planetary sciences. In prep.
  355. Pisello A., Ferrari M., De Angelis S., Vetere F., Porreca M., Stefani S., Perugini D. (2022). Reflectance of silicate glasses in the mid-infrared region (MIR): implications for planetary research. Icarus, 388, 115222.
  356. Poli S., Schmidt M.W., (1995). H2O transport and release in subduction zones: experimental constraints on basaltic and andesitic systems. J. Geophys. Res. 100, 22299e22314.
  357. Poli S., Schmidt M.W., (2002). Petrology of subducted slabs. Annu. Rev. Earth Planet. Sci. 30, 207e235.
  358. Presnall D.C., Dixon J.R., O’Donnell T.H., Dixon S.A. (1979) Generation of mid-ocean ridge tholeiites. J. Petrol. 20:3–35
  359. Randolph A. D. & Larson M. A. (1971) Theory of Particulate Processes. New York: Academic Press.
  360. Reed S. J. B. (1996). Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge, New York: Cambridge University Press.
  361. Reid A. M., Ridley W. I., Donaldson C., and Brown R. W. (1973) Glass compositions in the orange and gray soils from Shorty Crater, Apollo 17. EOS 54, 607-609.
  362. Reuss A. (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizita ̈tsbedingung fu ̈r Einkristalle. Z. Angew. Math. Mech. 9, 49–58.
  363. Richet P. (1984) Viscosity and configurational entropy of silicate melts. Geochim. Cosmochim. Acta 48, 471-483.
  364. Richet P. and Bottinga Y. (1995) Rheology and configurational entropy of silicate melts. In Structure, Dynamics and Properties of Silicate Melts, (Eds. J.F. Stebbins, P.F. McMillan and D.B. Dingwell), Rev. in Mineral. 32, 67-94
  365. Ringwood A.E. (1974) The petrological evolution of island arc systems. J. Geol. Soc. 130:183–204
  366. Roscoe R., (1952). The viscosity of suspensions of rigid spheres. British Journal of Applied Physics, 3, 267-269.
  367. Roselieb K., and Jambon A. (2002) Tracer diffusion of Mg, Ca, Sr, and Ba in Na-aluminosilicate melts, Geochim. Cosmochim. Acta, 66, 109–123.
  368. Roselieb, K., Rammensee W., Buttner H. and Rosenhauer M. (1992) Solubility and diffusion of noble gases in vitreous albite, Chem. Geol., 96, 241–266.
  369. Roselieb K., W. Rammensee H. Buttner, and Rosenhauer M. (1995) Diffusion of noble gases in melts of the system SiO2-NaA1Si2O6, Chem. Geol., 120, 1–13.
  370. Rossano S., Behrens H., & Wilke M. (2007). Advanced ana- lyses of 57Fe Mössbauer data of alumino-silicate glasses. Physics and Chemistry of Minerals, 35, 2, 77–93. DOI: 10.1007/s00269-007-0200-8
  371. Rubin A.E. e Ma C., (2021) Meteorite Minerology Cambridge University Press, ISBN 978-1-108-48452-7. DOI: 10.1017/9781108613767
  372. Rutgers I. R. (1962a) Relative viscosity of suspensions of rigid spheres in Newtonian liquids. Rheol. Acta 2, 202–210.
  373. Rutgers I. R. (1962b) Relative viscosity and concentration. Rheol. Acta 2, 305–348.
  374. Ryerson F.J.,Weed H.C., Piwinskii A.J., (1988) Rheology of subliquidus magmas 1. Picritic compositions. Journal of Geophysical Research, 93, 3421-3436.
  375. Sakamaki, T., A. Suzuki, E. Ohtani, H. Terasaki, S. Urakawa, Y. Katayama, K.-i. Funakoshi, Y. Wang, J. W. Hernlund, and M. D. Ballmer (2013). “Ponded melt at the boundary between the lithosphere and asthenosphere”. Nature Geoscience 6.12, pp. 1041– 1044. DOI: 10.1038/ngeo1982
  376. Sakamaki, T., E. Ohtani, S. Urakawa, A. Suzuki, and Y. Katayama (2010b). Density of dry peridotite magma at high pressure using an X-ray absorption method. American Mineralogist 95.1, pp. 144–147. DOI: 10.2138/am.2010.3143.
  377. Sakamaki T., E. Ohtani S. Urakawa A. Suzuki Y. Katayama and ZhaoD. (2010a). Density of high-Ti basalt magma at high pressure and origin of heterogeneities in the lunar mantle. Earth and Planetary Science Letters 299.3-4, pp. 285–289. DOI: 10.1016/j.epsl.2010.09.007.
  378. Sakamaki T., Suzuki A., Ohtani E. (2006) Stability of hydrous melt at the base of the earth’s upper mantle. Nature 439, 192–194.
  379. Sato H. (2005) Viscosity measurement of subliquidus magmas:1707 basalt of Fuji volcano. Journal of Mineralogical and Petrological Sciences 100:133-142, DOI: 10.2465/jmps.100.133.
  380. Scaillet B. and Evans B. W. (1999) The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P–T– f O2–f H2O conditions of the dacite magma, J. Petrol., 40, 381– 411. DOI: 10.1093/petroj/40.3.381
  381. Scaillet B. and Macdonald R.(2006) Experimental and Thermodynamic Constraints on the Sulphur Yield of Peralkaline and Meta- luminous Silicic Flood Eruptions, J. Petrol., 47, 1413–1437. DOI: 10.1093/petrology/egl016
  382. Scaillet B. and Pichavant M.(2004) Role of fO2 on fluid saturation in oceanic basalt, Nature, 430, 524 DOI: 10.1038/nature02814
  383. Scaillet B., Pichavant M., Roux J., Humbert G., and Lefevr, A. (1992) Improvements of the Shaw membrane technique for measurement and control of f H2 at high temperatures and pressures, Am. Mineral., 77, 647–655
  384. Scannell G., Barra S., and Huang L. (2016) Structure and properties of na2o-tio2-sio2 glasses: Role of na and ti on modifying the silica network. Journal of Non-Crystalline Solids, 448:52–61.
  385. Scarponi, F. et al. (2017). High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy. In: Physical Review X 7.3, p. 031015.
  386. Scherer G.W. (1986) Relaxation in glass and composites. Wiley, New York, pp 1–331
  387. Schmandt B., Jacobsen S.D., Becker T.W., Liu Z., Dueker K.G. (2014) Dehydration melting at the top of the lower mantle. Science 344, 1265–1268.
  388. Schmidt B. C., Holtz F., Scaillet B., and Pichavant M. (1997) The influence of H2O-H2 fluids and redox conditions on melting temperatures in the haplogranite system, Contrib. Mineral. Petrol., 126, 386–400. DOI: 10.1007/s004100050258
  389. Schmidt B. C., Scaillet B., and Holtz F. (1995) Accurate con- trol of fH2 in cold-seal pressure vessels with the Shaw membrane technique, Eur. J. Mineral., 7, 893–903. DOI: 10.1127/ejm/7/4/0893
  390. Schmidt B.C., Zotov N., Dupree R., (2004) Structural implications of water and boron dissolution in albite glass. J. Non-Cryst. Solids 337, 207–219.
  391. Schmidt M.W., Poli S., (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361-379
  392. Scholze H. (1956) Der Einbau des Wassers in Glasem. 4th International Congress on Glass, 424-429.
  393. Scholze H. (1991) Glass. Nature, Structure, and Properties. Springer, Berlin.
  394. Scholze H. (1960) Uber die quantitative IR-Spektrosskopische Wasser-Bestimmung in Sillicaten. Fortschr. Mineral. 38, 122–123.
  395. Schramm C. M., DeJong B. H. W. S., and Parziale V. E (1984) Magic angle spinning NMR study of local silicon environments in-amorphous and crystalline lithium silicates. J. Amer. Chem. Soc. 106, 4396-4402.
  396. Schultze F., Behrens H., Hurkuck W. (1999) Determination of the influence of pressure and dissolved water on the viscosity of highly viscous melts: Application of a new parallel-plate viscometer. American Mineralogist, Volume 84, pages 1512–1520,
  397. Searle G.F.C., (1912) A simple viscometer for very viscous liquids, Proc. Cambridge Philos. Soc.
  398. Sears D.W.G (2005) The origin of chondrules and chondrites. Cambridge University Press. www.cambridge.org/9780521836036
  399. Sehlke A., Whittington A., Robert B., Harris A., Gurioli L., Médard E. (2014) Pahoehoe to `a`a transition of Hawaiian lavas: an experimental study. Bulletin of Volcanology 76:1-20 DOI: 10.1007/s00445-014- 0876-9
  400. Sehlke A. and Whittington A. G. (2015). Rheology of lava flows on Mercury: An analog experimental study: MERCURY LAVA RHEOLOGY. J Geophys Res Planets 120, 1924–1955
  401. Sehlke A., Whittington A. (2020) Rheology of a KREEP analog magma: Experimental results applied to dike ascent through the lunar crust Planetary and Space Science 187 (2020) 104941
  402. Sehlke A., Whittington A.G., (2016) The viscosity of planetary tholeiitic melts: a con!gurational entropy model. Geochimica et Cosmochimica Acta 191. DOI: 10.1016/j.gca.2016.07.027
  403. Sehlke A., Whittington A.G., Hofmeister A.M., (2017) Rheology and thermal Budget of lunar basalts: an experimental study and its implications for sinuous rille formation on the Moon. Abstract NESF2017-007. In: Presented at the NASA Exploration Science Forum, Moffett Field CA.
  404. Seifert R., Malfait W., Petitgirard S., and Sanchez-Valle C. (2013). Density of phonolitic magmas and time scales of crystal fractionation in magma chambers. Earth and Planetary Science Letters 381, pp. 12– 20. DOI: 10.1016/j.epsl.2013.08.039.
  405. Shapiro A.P., Probstein R.F. (1992) Random packings of spheres and fluidity limits of monodisperse and bidisperse suspensions. Physical review letters 68:1422
  406. Shaw H.R. (1965). Comments on viscosity, crys- tal settling and convection in granitic mag- mas. Am. J. Sci. 263:120–52
  407. Shaw H. R. (1963) Hydrogen-Water Vapor Mixtures: Control of Hydrothermal Atmospheres by Hydrogen Osmosis, Science, 139, 1220–1222. DOI: 10.1126/science.139.3560.1220
  408. Shaw H. R. (1969). Rheology of basalt in the melting range. Journal of Petrology, 10, 510–535.
  409. Shaw H. R., and Swanson D. A. (1970). Eruption and flow rates of flood basalts. In Proceedings, 2nd Columbia River Basalts Symposium, ed. E. H. Gilmour and D. Stradling. Cheney, WA: Eastern Washington State College Press, 271–299.
  410. Shaw H.R. (1972) Viscosities of magmatic silicate liquids: An empirical method of prediction. Am. J. Sci. 272:870–893.
  411. Shea T. and Hammer J. E. (2013) Oxidation in CSPV experiments involving H2O-bearing mafic magmas: Quan- tification and mitigation, Am. Mineral., 98, 1285–1296. DOI: 10.2138/am.2013.4253
  412. Shen A. and Keppler H. (1995) Temperature-dependence of water speciation in silicate melts: ln-situ FTIR spectroscopy to 10 kbars and 1000~ EOS 76, 647.
  413. Shen A.H., Keppler H., (1997). Direct observation of complete miscibility the albite-H2O system. Nature 385, 710–712.
  414. Shimizu N, Kushiro I. (1984) Diffusivity of oxygen in jadeite and diopside melts at high pressures. Geochim. Cosmochim. Acta 48:1295–303
  415. Shimizu N. and Kushiro I. (1991) The mobility of Mg, Ca, and Si in diopside-jadeite liquids at high pressures. In Physical Chemistry of Magmas (ed. L. L. Perchuk and I. Kushiro), pp. 192.
  416. Shishkina T. A., Botcharnikov R. E., Holtz F., Almeev R. R., & Portnyagin M. V. (2010) Solubility of H2O‐ and CO2‐ bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chemical Geology, 277(1), 115–125. DOI: 10.1016/j.chemgeo.2010.07.014
  417. Silver L. and Stolper E. (1985) A thermodynamic model for hydrous silicate melts. J. Geol. 93,
  418. Silver L., Ihinger P.D., Stolper E. (1990) The influence of bulk composition on the speciation of water in silicate glasses. Contrib. Mineral. Petrol. 104, 142–162.
  419. Sisson T. W. and Grove T. L. (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduc- tion zone magmatism, Contrib. Mineral. Petrol., 113, 143–166 DOI: 10.1007/BF00283225
  420. Sisson T. W., Ratajeski A. K., Hankins A. W. B., and Glazner A. F. (2005) Voluminous granitic magmas from com- mon basaltic sources, Contrib Miner. Pet., 148, 635–661, . DOI: 10.1007/s00410-004-0632-9
  421. Smyth J. R., BishD. L. (1988) Crystal Structures and Cation Sites of the Rock-Forming Minerals London and Boston (Unwin-Hyman Ltd.) 1988, 332 pp.
  422. Snyder D. A. and Carmichael I. S. E. (1992) Olivine-liquid equilibria and the chemical activities of FeO, NiO, Fe2 O3 , and MgO in natural basic melts, Geochim. Cosmochim. Ac., 56, 303–318. DOI: 10.1016/0016-7037(92)90135-6
  423. Snyder D., Carmichael I. S. E. and Wiebe R. A.(1993) Experimental study of liquid evolution in an Fe-rich, layered mafic intrusion: constraints of Fe-Ti oxide precipitation on the T-fO2 and T- ρ{variant} paths of tholeiitic magmas, Contrib. Mineral. Petrol., 113, 73–86. DOI: 10.1007/BF00320832
  424. Soller D.R., Ray R.D. Brown R.D. (1982) A new global crustal thickness map. Tectonics
  425. Sonder I., Zimanowsky B., Buttner R. (2006) Non-Newtonian viscosity of basaltic magma. GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L02303. DOI: 10.1029/2005GL024240
  426. Sowerby J. R. and Keppler H. (1999) Water speciation in rhyolitic melt determined by in-situ infrared spectroscopy. Amer. Mineral. 84, 1843-1849.
  427. Sowerby J.R., Keppler H., (2002). The effect of fluorine, boron and excess sodium on the critical curve in the albite–H2O system. Contrib. Mineral. Petrol. 143, 32–37.
  428. Spallanzani, L., 1792–1797. Viaggi alle Due Sicilie e in alcune parti dell’Appennino, transl. as Travels in the Two Sicilies and Some Parts of the Appenines, J. Robinson, London. Stamperia di B. Comini, Pavia.
  429. Spina L., Cimarelli C., Scheu B., Di Genova D., Dingwell D.B. (2016) On the slow decompressive response of volatile-and crystal-bearing magmas: An analogue experimental investigation. Earth and Planetary Science Letters 433:44-53
  430. Stickel J. J. and Powell R. L. (2005) Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37, 129–149. DOI: 10.1146/annurev.fluid.36.050802.122132
  431. Stolper E.M. and Ahrens T.J. (1987) On the nature of pressure-induced coordination changes in silicate melts and glasses DOI: 10.1029/GL014i012p01231
  432. Stolper E.M. (1980). A phase diagram for mid-ocean ridge basalts: preliminary results and implications for petrogenesis. Contrib. Mineral. Petrol. 74:13–27
  433. Stolper E.M. (1982a). The speciation of water in silicate melts. Geochim. Cosmochim. Acta 46, 2609–2620.
  434. Stolper E.M. (1982b). Water in silicate glasses: an infrared spectroscopic study. Contrib. Mineral. Petrol. 81, 1–7.
  435. Suzuki A., Ohtani E., (2003) Density of peridotite melts at high pressure. Phys. Chem. Miner. 30, 449–456.
  436. Tait K. T., Sokolova E. V., Hawthorne F. C., and Khomyakov A. P. (2003) The crystal chemistry of nepheline from Monte Somma, Italy. Canadian Mineral. 41, 61-70.
  437. Takahashi E, Kushiro I. (1983). Melting of a dry peridotite at high pressures and basalt magma genesis. Am. Mineral. 68:859–79
  438. Takahashi E., Shimazaki T., Tsuzaki Y., Yoshida H., (1993) Melting study of a peridotite KLB-1 to 6.5 GPa, and the origin of basaltic magmas. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 342 (1663), 105–120.
  439. Tamic N., Behrens H., & Holtz F. (2001) The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2–H2O fluid phase. Chemical Geology, 174(1), 333–347.
  440. Tammann G. and Hesse W. (1926) Die Abhängigkeit der Viskosität von der Temperatur bei unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie 156, 245-257.
  441. Tangney E and Scandolo S. (2003) A many-body interatomic potential for ionic systems: Application to MgO. J. Chem. Phys. 119, 9673-9685.
  442. Tangney P. and Scandolo S. (2002) An ab initio parametrized interatomic force field for silica. J. Chem. Phys. 117, 8898-9904.
  443. Taylor M. and Brown G. E. (1979a) Structure of mineral glasses. II. The SiO2-NaA1SiO4 join. Geochim. Cosmochim. Acta 43, 1467-1475.
  444. Taylor M. and Brown G. E. (1979b) Structure of mineral glasses. I. The feldspar glasses NaA1Si308, KA1Si308, CaA12Si208. Geochim. Cosmochim. Acta 43, 61-77.
  445. Thomas D. G. (1965) Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. J. Colloid Sci. 20, 267–277.
  446. Thy P. and Lofgren G.E. (1994) Experimental constraints on the low-pressure evolution of transitional and mildly alkalic basalts: the effect of Fe-Ti oxide minerals and the origin of basaltic andesites, Contrib. Mineral. Petrol., 116, 340–351. DOI: 10.1007/BF00306502
  447. Till C.B., Grove T.L., Withers A.C., (2012) The beginnings of hydrous mantle wedge melting. Contrib. Mineral. Petrol. 163, 669–688.
  448. Tomozawa M. (1993) Alkali ionic transport in mixed alkali glasses, J. Non-Cryst. Solids, 152, 59–69.
  449. Tool A. Q. and Eichlin C. G. (1931) Variations caused in the heating curves of glass by heat treatment. J. Amer. Ceram. Soc. 14, 276-308.
  450. Toplis M. J. and Carroll M. R. (1995) An experimental study of the influ- ence of oxygen fugacity on fe-ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems, J. Petrol., 36, 1137–1170, . DOI: 10.1093/petrology/36.5.1137
  451. Toplis M.J., Dingwell D.B., Libourel G. (1994). The effect of phosphorus on the iron redox ratio, viscosity, and density of an evolved ferro-basalt. Contrib. Mineral. Petrol. 117, 293–304.
  452. Toplis M.J., Mizzon H., Monnereau M., Forni O., McSween,H.Y., Mittlefehldt D.W., McCoy T.J., Prettyman T.H., De Sanctis M.C., Raymond C.A., Russell C.T., (2013). Chondritic models of 4 Vesta: impli- cations for geochemical and geophysical properties. Meteorit. Planet. Sci. 48 (11), 2300–2315.
  453. Tripoli B. A., Cordonnier B., Zappone A., and Ulmer P. (2015) Effects of crystallization and bubble nucleation on the seismic prop- erties of magmas, Geochem. Geophys. Geosyst, 17, 602–615, DOI: 10.1002/2015GC006123
  454. Troger W.E. (1935) Spezielle Petrographie der Eruptivgesteine. Verlag der Deutschen Mineralogischen Gesellschaft, Bonn, 360 pp
  455. Tuttle O.F., Bowen N.L. (1958) Origin of granite in the light of experimental studies in the system NaA1Si308-KAISi,O,-Si0,-H,O. Geol Soc Am Mem 74, 153 pp
  456. Uchino T. and Yoko T. (1998) Structure and vibrational properties of sodium disilicate glass from ab initio molecular orbital calculations. J. Phys. Chem. B 102, 8372-8378.
  457. Ulmer P., (2001) Partial melting in the mantle wedgedthe role of H2O in the genesis of mantle-derived “arc-related” magmas. Phys. Earth Planet. Inter. 127, 215–232.
  458. Underwood E. E. (1970) Quantitative Stereology. Reading, MA: Addison-Wesley.
  459. Vaills Y., Luspin,Y., Hauret G., and Coté, B. (1993) Elastic properties of sodium magnesium silica and sodium calcium silica glasses by brillouin scattering. Solid state communications, 87(12):1097–1100.
  460. van der Molen I, Paterson MS. 1979. Experi- mental deformation of partially-melted granite. Contrib. Mineral. Petrol. 70:299–318
  461. Van Kan Parker, M., C. Sanloup, N. Sator, B. Guil- lot, E. J. Tronche, J.-P. Perrillat, M. Mezouar, N. Rai, and W. van Westrenen (2012). “Neutral buoyancy of titanium-rich melts in the deep lunar interior”. Nature Geoscience 5.3, pp. 186–189 DOI: 10.1038/ngeo1402.
  462. van Keken, P.E., Hacker, B.R., Syracuse, E.M., Abers, G.A., 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. 116, B01401.
  463. Vand V (1948) Viscosity of solutions and suspensions. I. Theory. The Journal of Physical Chemistry 52:277-299.
  464. Vasavada, A. R., D. A. Paige, and S. E. Wood, (1999), Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus, 141, 179–193.
  465. Vetere F. and Holtz F. (2020b) Rheological behavior of partly crystallized silicate melts under variable shear rate. Chapter in Dynamic Magma Evolution, Geophysical Monograph Series – WILEY, edited by F. Vetere. DOI: 10.1002/9781119521143.ch7
  466. Vetere F., Behrens H., Botcharnikov R., Holtz F., Fanara S. (2014) The role of alkalis in the solubility of H2O and CO2 in silicate melts. Implication for phonotephritic magmas. Contribution to Mineralogy and Petrology 167, 1-17.
  467. Vetere F., Behrens H., Holtz F., Neuville D. R. (2006) Viscosity of andesitic melts – new experimental data and a revised calculation model. Chemical Geology 228, 233-245.
  468. Vetere F., Behrens H., Misiti V., Ventura G., De Rosa R., Holtz F., Deubener J. (2007) Viscosity of shoshonitic melt (Vulcanello Aeolian Islands, Italy) and inference on the dynamics of magma ascent. Chemical Geology 245, 89-102.
  469. Vetere F., Behrens H., Schuessler J. A., Holtz F., Misiti V., Borchers L. (2008) Viscosity of andesite melts and its implication for magma mixing prior to Unzen 1991 – 1995 eruption. Journal of Volcanology and Geothermal Research, 175, 208-217. DOI: 10.1016/j.jvolgeores. 2008.03.028
  470. Vetere F., Iezzi G., Perugini D. and Holtz F. (2022) Rheological Changes in Melt and Magma Induced by Deformation and Cooling Events. CR-Geosciences, 354, p. 1-22. DOI: 10.5802/crgeos.125
  471. Vetere F., Mazzeo A., Perugini D. and Holtz F. (2020a). Viscosity behaviour of silicate melts during cooling under variable shear rates. Journal of Non-Crystalline Solids, 533, 119902
  472. Vetere F., Murri M., Alvaro M., Domeneghetti M.C., Rossi S., Pisello A., Holtz F., Perugini D. (2019) Viscosity of Pyroxenite Melt and its Evolution during Cooling: an experimental approach. JGR-Planets 124. DOI: 10.1029/2018JE005851
  473. Vetere, F., Botcharnikov, R. E., Holtz, F., Behrens, H., & De Rosa, R. (2011). Solubility of H2O and CO2 in shoshonitic melts at 1250 °C and pressures from 50 to 400MPa: Implications for Campi Flegrei magmatic systems. Journal of Volcanology and Geothermal Research, 202(3), 251–261. DOI: 10.1016/j.jvolgeores.2011.03.002
  474. Vetere, F., Rossi, S., Namur, O., Perugini, D., Morgavi, D., Misiti, V., Mancinelli, P., Petrelli, M., and Pauselli, C. (2017). Experimental constraints on the rheology, eruption and emplacement dynam- ics of lavas from Mercury Northern Volcanic Plains. J. Geophys. Res.: Planets, 122, 1–17.
  475. Vigneresse J.L., Tikoff B. (1999) Strain partitioning during partial melting and crystallising felsic magmas. Tectonophysics 312:117–32
  476. Virgo D. and Mysen B. O. (1985) The structural state of iron in oxidized vs. reduced glasses at 1 atm: A 57Fe Mossbauer study. Phys. Chem. Minerals 12, 65-76.
  477. Visser W. & Koster Van Groos A. F. (1979). Effects of P2 O5 and TiO2 on liquid-liquid equilibria in the system K2O- FeO-Al2O3 -SiO2. Am. J. Sci. 279, 970–983.
  478. Vogel D.H. (1921). Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Physikalische Zeitschrift 22, 645-646.
  479. Voigt W. (1928) Lehrbuch der Kristallphysik. Leipzig, Germany.
  480. Vona A. and Romano C. (2013) The effects of under- cooling and deformation rates on the crystalliza- tion kinetics of Stromboli and Etna basalts. Con- trib. Mineral. Petrol., 166(2), 491–509.
  481. Vona A., Romano C., Dingwell D. B., and Giordano D. (2011) The rheology of crystal-bearing basaltic magmas from Stromboli and Etna. Geochim. Cos- mochim. Acta, 75(11), 3214–3236.
  482. Vuilleumier R., Seitsonen A., Sator N., and Guillot B. (2015) Carbon dioxide in silicate melts at upper mantle conditions: Insights from atomistic simulations, Chem. Geol., 418, 77-88. DOI: 10.1016/j.chemgeo.2015.02.027.
  483. Wadhwa M., (2008). Redox conditions on small bodies, the Moon and Mars. Rev. Mineral. Geochem. 68 (1), 493–510.
  484. Waft H. S. (1975) Pressure-induced coordination changes in magmatic liquids. Geophys. Res. Lett. 2, 193-196.
  485. Waft H. S. (1977) The structural role of ferric iron in silicate melts. Can Mineral. 15, 198-199.
  486. Walker D., Shibata T., DeLong S.E. (1979). Abyssal tholeiites from the Oceanographer Fracture Zone, II. Phase equilibria and mixing. Contrib. Mineral. Petrol. 70:111–25
  487. Wallace P. (2005). Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. Journal of Volcanology and Geothermal Research 140, 217-240.
  488. Walshaw R. (2018) Electron probe microanalysis (EPMA) in the Earth Sciences. In: Book of Tutorials and Abstracts. Microbeam Analysis in the Earth Sciences, 13th EMAS Regional Workshop, 04-07 Sep 2018, University of Bristol.
  489. Wang Z., Cooney T. F., and Sharma S. K. (1993) High temperature structural investigation of Na2Oe0.5Fe203e3SiO2 and Na2OeFeOe3SiO2melts and glasses. Contrib. Mineral. Petrol. 115, 111-122
  490. Wang, Y. et al. (2014) Atomistic insight into viscosity and density of silicate melts under pressure. Nat. Commun. 5:3241 . DOI: 10.1038/ncomms4241
  491. Warren B. E. and Pincus A. G. (1940) Atomic considerations of immiscibility in glass systems. J. Amer. Ceram. Soc. 23, 301-304.
  492. Waseda Y. and Toguri J. M. (1978) The structure of the molten FeO-SiO2system. Metall. Trans. B. 9, 595-601.
  493. Waseda Y., Shiraishi Y., and Toguri J. M. (1980) The structure of the molten FeO-Fe203-SiO2 system by X-ray diffraction. Trans. Jap. Inst. Metall. 21, 51-62.
  494. Watson E. B. (1981), Diffusion in magmas at depth in the earth: The effects of pressure and dissolved H2O, Earth Planet. Sci. Lett., 52, 291–301.
  495. Waychunas G. A., Apted M. J., and Brown G. E. (1983) X-ray K-edge absorption spectra of Fe minerals and model compounds: Near-edge structure. Phys. Chem. Minerals 10, 1-9.
  496. Webb S.L., Dingwell D.B. (1990a) Non-Newtonian Rheology of Igneous Melts at High Stresses and Strain Rates: Experimental Results for Rhyolite, Andesite, Basalt, and Nephelinite. J Geophys Res 95:15695- 15701 DOI: 10.1029/JB095iB10p15695
  497. Webb S.L., Dingwell D.B. (1990b) The onset of non-Newtonian rheology of silicate melts. Physics and Chemistry of Minerals 17:125-132
  498. Wechsler B.A., Von Dreele R.B., (1989). Structure refinement of Mg2TiO4, MgTiO3 and MgTi2O5 by time-of-flight neutron powder diffraction. Acta Cryst. B45, 542–549.
  499. Wedepohl K. H. ( 1969) Handbook of Geochemistry. Springer-Verlag.
  500. Wedepohl K.H. (1981) Der primare Erdmantel (Mp) und die durch Krustenbildung verarmte Mantelzusammensetzung (Md). Fortschr Miner 59, Beih 1:203-205.
  501. Wedepohl K.H. (1991) Chemical composition and fractionation of the continental crust. Geol Rundsch 80:207-223
  502. Weibel,E.E. (1979) Stereological Methods, Vol. 1: Practical Methods for Biological Morphometry. Academic Press, London.
  503. Weider S.Z., Nittler L.R., Starr,R.D., Crapster-Pregont E.J., Peplowski P.N., Denevi B.W., Head J.W., Byrne P.K., Hauck II,S.A., Ebel D.S., Solomon S.C. (2015) Evidence for geochemical terranes on Mercury: global mapping of major elements with MESSENGER’s X-ray spectrometer. Earth Planet. Sci. Let. 416, 109–120.
  504. Weigel C., Le Losq C., Vialla R., Dupas C., Clément, S., Neuville D. R., and Rufflé B. (2016) Elastic moduli of xalsio4 aluminosilicate glasses: effects of charge-balancing cations. Journal of Non-Crystalline Solids, 447:267–272.
  505. Whang Y., et al (2013) Atomistic insight into viscosity and density of silicate melts under pressure. Nature Communications 5: 3241 DOI: 10.1038/ncomms4241
  506. Wildemuth C., Williams M.(1984) Viscosity of suspensions modeled with a shear-dependent maximum packing fraction. Rheol Acta 23:627-635
  507. Wilke M. and Behrens H. (1999) The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity, Contrib. Mineral. Petrol., 137, 102– 114 DOI: 10.1007/s004100050585
  508. Wilke M., Farges F., Partzsch G. M., Schmidt C., & Behrens H. (2007). Speciation of Fe in silicate glasses and melts by in-situ XANES spectroscopy. American Mineralogist, 92, 1, 44–56. DOI: 10.2138/am.2007.1976
  509. William D.B. and Carter C.B. (2009) transmission electron microscopy. A textbook for material sciences. Springer ISBN 978-0-387-76500-6
  510. Williams D. A., R. C. Kerr C. M. Lesher and BarnesS. J. (2001), Analytical/numerical modeling of komatiite lava emplacement and thermal erosion at perseverance, Western Australia, J. Volcanol. Geotherm. Res., 110(1–2), 27–55 DOI: 10.1016/S0377-0273(01)00206-2.
  511. Williams D. W. (1968) Improved cold seal pressure vessels to operate at 11000C at 3 Kilobars, Am. Mineral., 53, 1765–1769.
  512. Wolf M.B., London D., (1994). Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanisms. Geochim. Cosmochim. Acta 58, 4127–4145.
  513. Wu L., Yang D.-B., Liu J.-X., Hu B., Xie H.-S., Li F.-F., Yu Y., Xu W.-L., and Gao C.-X. (2017) A brillouin scattering study of hydrous basaltic glasses: the effect of h 2 o on their elastic behavior and implications for the densities of basaltic melts. Physics and Chemistry of Minerals, 44(6):431–444.
  514. Wyllie P. J. and Tuttle O. F. (1964) Experimental investigation of silicate systems containing two volatile components. III. The effects of SO3, P205, HC1, and Li20 in addition to H20 on the melting temperatures of albite and granite. Amer. J. Sci. 262, 930-939.
  515. Wyllie P.J., Tuttle O.F. (1961) Experimental investigations of silicate systems containing two volatile components. Am J Sci 259:128-143
  516. Xue X. and Stebbins J. F. (1993) 23Na NMR chemical shifts and local Na coordination environments in silicate crystals, melts and glasses. Phys. Chem. Miner. 20, 297–307.
  517. Yin Y. and Zajacz Z. (2018) The solubility of silver in magmatic fluids: Implications for silver transfer to the magmatic-hydrothermal ore-forming environment, Geochim. Cosmochim. Acta, 238, 235–251, DOI: 10.1016/j.gca.2018.06.041
  518. Yoder H.S. and Tilley C.E. (1962) Origin of Basalt Magmas: An Experimental Study of Natural and Synthetic Rock Systems. Journal of Petrology, 3, 342-532. DOI: 10.1093/petrology/3.3.342
  519. Yue Y. Z. and Bruckner R. (1996) On the different de- scriptions of the non-Newtonian viscosity (shear- thinning effect) of glass melts with respect to heat dissipation. Gerlands Beitr. Geophys., 69(6), 179– 185.
  520. Zachariasen W. H. (1932) The atomic arrangement in glass. J. Amer. Chem. Soc., 54, 3841-3851.
  521. Zajacz Z., Candela P. A., Piccoli P. M., and Sanchez-Valle C. (2012b) The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations, Geochim. Cosmochim. Ac., 89, 81–101. DOI: 10.1016/j.gca.2012.04.039
  522. Zajacz Z., Candela P. A., Piccoli P. M., Wälle M., and Sanchez- Valle C. (2012a) Gold and copper in volatile saturated mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation, Geochim. Cosmochim. Ac., 91, 140–159. DOI: 10.1016/j.gca.2012.05.033
  523. Zajacz Z., Seo,J. H., Candela P. A., Piccoli P. M., and Tossell J. A. (2011) The solubility of copper in high-temperature mag- matic vapors: A quest for the significance of various chloride and sulfide complexes, Geochim. Cosmochim. Ac., 75, 2811–2827. DOI: 10.1016/j.gca.2011.02.029
  524. Zajacz Z., Seo J. H., Candela P. A., Piccoli P. M., Heinrich C. A., and Guillong M. (2010) Alkali metals control the release of gold from volatile-rich magmas, Earth Planet. Sc. Lett., 297, 50–56. DOI: 10.1016/j.epsl.2010.06.002
  525. Zanotto E. (1997) Do cathedral glasses flow? Am. J. Phys. 66 ~5!, May 1998
  526. Zhang Y, Ni H (2010) Diffusion of H, C, and O components in silicate melts. Rev Mineral Geochem 72:171-225
  527. Zhang Y. (2008) Geochemical Kinetics. Princeton University Press, 661pp. ISBN-13: 978-0-691-12432-2
  528. Zhang Y. (2010) Diffusion in minerals and melts: Theoretical background, Rev. Mineral. Geochem., 72, 5–59.
  529. Zhang Y., D. Walker and C. E. Lesher (1989) Diffusive crystal dissolution, Contrib. Mineral. Petrol., 102, 492–513.
  530. Zhang Y., H. Ni and Y. Chen (2010) Diffusion data in silicate melts, Rev. Mineral. Geochem., 72, 311–408.
  • Publication Year: 2024
  • Pages: 210
  • eISBN: 979-12-215-0247-3
  • Content License: CC BY-SA 4.0
  • © 2024 Author(s)

  • Publication Year: 2024

  • Publication Year: 2024
  • Pages: 210
  • ISBN: 979-12-215-0246-6
  • Content License: CC BY-SA 4.0
  • © 2024 Author(s)

Bibliographic Information

Book Title

Elementi di petrologia sperimentale


Francesco Pasqualino Vetere

Peer Reviewed

Number of Pages


Publication Year


Copyright Information

© 2024 Author(s)

Content License

CC BY-SA 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press, USiena Press



ISBN Print


eISBN (pdf)


Series Title

UNIverSI. Ricerca – Didattica – Terza missione all’Università di Siena

News and Events




Search in This Book
Export Citation
Suggested Books


Open Access Books

in the Catalogue


Book Chapters





from 876 Research Institutions

of 64 Nations


scientific boards

from 343 Research Institutions

of 43 Nations



from 363 Research Institutions

of 38 Nations