Mediation in civil trials can effectively resolve disputes outside of court proceedings, easing the burden on the courts if successful. Efficiency in identifying disputes is essential, as a failed attempt at mediation can lengthen the duration of the trial. The decision rests with the judge/tribunal on the basis of numerous documents that contain certain statements significant to the decision. This paper describes an artificial intelligence, AI, solution to provide a decision support system that can process documents and (i) produce reliable suggestions, (ii) produce substantiated reasons by highlighting the statements that led to the suggestion, and (iii) respect privacy and data security. Explainable AI techniques (XAI) technologies were used for this purpose, resulting in a solution that meets the defined objectives. The solution was developed as part of the research project "Agile Justice," funded in the Italian National Governance and Institutional Capacity NOP, and validated against real cases. The solution leveraged the Snap4City framework for data management and AI/XAI solution.
University of Florence, Italy - ORCID: 0000-0003-1044-3107
Titolo del capitolo
Valutazione della propensione alla mediazione tramite eXplainable AI
Autori
Paolo Nesi
Lingua
Italian
DOI
10.36253/979-12-215-0316-6.13
Opera sottoposta a peer review
Anno di pubblicazione
2023
Copyright
© 2023 Author(s)
Licenza d'uso
Licenza dei metadati
Titolo del libro
Giustizia sostenibile
Sottotitolo del libro
Sfide organizzative e tecnologiche per una nuova professionalità
Curatori
Paola Lucarelli
Opera sottoposta a peer review
Numero di pagine
270
Anno di pubblicazione
2023
Copyright
© 2023 Author(s)
Licenza d'uso
Licenza dei metadati
Editore
Firenze University Press
DOI
10.36253/979-12-215-0316-6
ISBN Print
979-12-215-0315-9
eISBN (pdf)
979-12-215-0316-6
Collana
Studi e saggi
ISSN della collana
2704-6478
e-ISSN della collana
2704-5919