Contenuto in:
Capitolo

Total Process Error framework: an application to economic statistical registers

  • Roberta Varriale
  • Fabiana Rocci
  • Orietta Luzi

In recent years, the Italian national institute of statistics (Istat), together with most National Statistical Institutes, is progressively moving from traditional production models based on the use of primary source of information - represented by direct surveys - to new production strategies based on the combined use of different primary and secondary sources of information. As result, new multisource statistical processes have been built, that guarantee a major improvement of both amount and quality of information about several phenomena of public interest. In this context, the Total Process Error (TPE) framework has been recently proposed in literature for assessing the quality of multisource processes. The TPE framework represents an evolution of the Zhang’s two-phase life-cycle approach and it additionally includes an operational tool to connect the steps of the multisource production process to the phases of the quality evaluation framework. TPE framework can be used both to support a multisource process design and to monitor an entire production process, in order to provide key elements to assess the quality of both the processes and their statistical outputs. In the present work, we describe as a case study in the new context of Istat production of official statistics the use of the TPE framework to support the process design of the Register for Public Administrations.

  • Keywords:
  • quality assessment,
  • total error,
  • multisource processes,
  • statistical registers,
+ Mostra di più

Roberta Varriale

ISTAT, Italian National Institute of Statistics, Italy

Fabiana Rocci

ISTAT, Italian National Institute of Statistics, Italy

Orietta Luzi

ISTAT, Italian National Institute of Statistics, Italy

  1. AA.VV. (2014). Memobust Handbook on Methodology of Modern Business Statistics. Available at: https://ec.europa.eu/eurostat/cros/system/files/Memobust%20glossary%20def.pdf.
  2. Rocci F., Varriale R., Luzi O. (2022). Total process error: An approach for assessing and monitoring the quality of multisource processes. Forthcoming in Journal of Official Statistics, June 2022.
  3. Wallgren, A. and B. Wallgren. (2014). Register based statistics: Administrative data for statistical purposes. John Wiley & Sons, Ltd.
  4. Zhang, L.C. 2012. Topics of statistical theory for register-based statistics and data integration. Statistica Neerlandica, 66 (1), pp. 41-63.
PDF
  • Anno di pubblicazione: 2021
  • Pagine: 147-151

XML
  • Anno di pubblicazione: 2021

Informazioni sul capitolo

Titolo del capitolo

Total Process Error framework: an application to economic statistical registers

Autori

Roberta Varriale, Fabiana Rocci, Orietta Luzi

Lingua

English

DOI

10.36253/978-88-5518-461-8.28

Opera sottoposta a peer review

Anno di pubblicazione

2021

Copyright

© 2021 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Informazioni bibliografiche

Titolo del libro

ASA 2021 Statistics and Information Systems for Policy Evaluation

Sottotitolo del libro

BOOK OF SHORT PAPERS of the on-site conference

Curatori

Bruno Bertaccini, Luigi Fabbris, Alessandra Petrucci

Opera sottoposta a peer review

Anno di pubblicazione

2021

Copyright

© 2021 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Editore

Firenze University Press

DOI

10.36253/978-88-5518-461-8

eISBN (pdf)

978-88-5518-461-8

eISBN (xml)

978-88-5518-462-5

Collana

Proceedings e report

ISSN della collana

2704-601X

e-ISSN della collana

2704-5846

197

Download dei libri

233

Visualizzazioni

Salva la citazione

1.385

Libri in accesso aperto

in catalogo

2.573

Capitoli di Libri

4.133.292

Download dei libri

4.951

Autori

da 1052 Istituzioni e centri di ricerca

di 66 Nazioni

69

scientific boards

da 370 Istituzioni e centri di ricerca

di 43 Nazioni

1.300

I referee

da 395 Istituzioni e centri di ricerca

di 38 Nazioni