Contenuto in:
Capitolo

Spread of Covid-19 epidemic in Italy between March 2020 and February 2021: empirical evidence at provincial level

  • Fabrizio Antolini
  • Samuele Cesarini
  • Francesco Giovanni Truglia

Italy was one of the countries severely affected by the Covid-19 pandemic. An analysis of the factors that played a role in the spread of this epidemic is necessary. However, the assessment of which factors may be specific, and which may contribute the most is complex and involves a high degree of uncertainty. The main objective of this study is to evaluate and analyse the statistical associations of the spread of Covid-19 infection with identified spatial context variables (density, old-age index, average temperature, and pollution). For this purpose, the developments from the spatial convergence theory were considered, as well as data from the Italian provinces from March 2020 to February 2021, referring to the first, second and third wave. The hypothesis tested in this study is to investigate the contribution of environmental and demographic factors to the convergence of observed infection rates. Based on panel data of 107 Italian provinces from the first to the third wave, this article uses a spatial autoregressive model (SAR) to analyse the conditional β-convergence of Covid-19 infection rates. The empirical results of this paper show that there is spatial conditional β-convergence in the intensity of infection rates. This means that the contagion in neighbouring areas will affect the contagion in the local area. The age structure and population density of the provinces had a certain promoting effect on the transmission of the infection, depending on the wave analysed. Regarding the observed average temperature, the effects are not very significant and inconsistent. For the first and last wave, the level of pollution is significant in explaining the convergence processes of the infection. We demonstrate that accounting for spatial factors is essential to capture key features of the spread of Covid-19 infection.

  • Keywords:
  • Covid-19,
  • Italian provinces,
  • Conditional β-convergence,
  • SAR model,
+ Mostra di più

Fabrizio Antolini

University of Teramo, Italy - ORCID: 0000-0002-3112-524X

Samuele Cesarini

University of Teramo, Italy - ORCID: 0000-0001-7062-1580

Francesco Giovanni Truglia

ISTAT, Italian National Institute of Statistics, Italy

  1. Alexiadis, S. (2010) Regional Convergence-clubs and Dynamic Externalities. Italian Journal of regional Science, 9(1).
  2. Akaike, Hirotugu (1974). A new look at the statistical model identification. In IEEE Transactions on Automatic Control 19(6), pp. 716–723.
  3. Arbia, G. (2005). Convergence in Per-capita GDP across European Regions using Panel Data Models Extended to Spatial Autocorrelation Effects. ISAE Working Paper, No.51. SSRN: http://ssrn.com/abstract=936327.
  4. Azuma, K., Yanagi, U., Kagi, N., Kim, H., Masayuki, M., & Hayashi, M. (2020). Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environmental Health a
  5. Barro, R. J., Sala-I-Martin, X. (1992). Convergence. Journal of Political Economy, 100, pp. 223-251.
  6. Baumol, W. J. (1986). Productivity Growth, Convergence and Welfare: What the Long-Run Data Show. American Economic Review, 76, pp. 1072-1085.
  7. Copat, C., Cristaldi, A., Fiore, M., Grasso, A., Zuccarello, P., Signorelli, S. S., Conti, G., & Ferrante, M. (2020). The role of air pollution (PM and NO2) in COVID-19 spread and lethality: A systematic review. Environmental Research, 191.
  8. Cutrini E., Salvati L. (2021). Unraveling spatial patterns of COVID-19 in Italy: Global forces and local economic drivers. Regional Science Policy and Practice, 13(S1), pp. 73-108.
  9. Goumenou, M., Sarigiannis, D., Tsatsakis, A., Anesti, O., Docea, A. O., Petrakis, D., and Calina, D. (2020). COVID 19 in Northern Italy: An integrative overview of factors possibly influencing the sharp increase of the outbreak (Review). Molecular Medicin
  10. Guliyev, H. (2020). Determining the Spatial Effects of COVID-19 Using the Spatial Panel Data Model. Spatial Statistics, 38.
  11. Guo, G., Wu, Z., and Chen, Y. (2020). Evaluation of spatially heterogeneous driving forces of the urban heat environment based on a regression tree model. Sustainable Cities and Society, 54.
  12. LeSage, J.P. (1998). Spatial Econometrics. Department of Economics. University of Toledo.
  13. Liu, X., Sun, T., and Feng, Q. (2020). Dynamic spatial spillover effect of urbanization on environmental pollution in China considering the inertia characteristics of environmental pollution. Sustainable Cities and Society, 53.
  14. Mankiw, N.G. (1992). A Contribution to the Empirics of Economic Growth. The Quarterly Journal of Economics, 107(2), pp. 407–437.
  15. Moosa, I. A., Khatatbeh, I. N. (2021). Robust and fragile determinants of the infection and case fatality rates of Covid-19: international cross-sectional evidence. Applied Economics, 53(11), pp. 1225-1234.
  16. Solow, R. M., T. W. Swan (1956) Economic Growth and Capital Accumulation. Economic Record, 32, pp. 334-361.
  17. Truglia, F.G. (2021). La nuda città. Spillover territoriali dei contagi da Covid-19 a Roma nella “seconda ondata”, in La metropoli continua Storia e vita sociale del quadrante Sud di Roma, Materiali e Documenti n.78 ed., La Sapienza University Press, pp.
  18. Zhao, R., Zhan, L., Yao, M., and Yang, L. (2020). A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2. 5. Sustainable Cities and Society, 56.
PDF
  • Anno di pubblicazione: 2023
  • Pagine: 107-112

XML
  • Anno di pubblicazione: 2023

Informazioni sul capitolo

Titolo del capitolo

Spread of Covid-19 epidemic in Italy between March 2020 and February 2021: empirical evidence at provincial level

Autori

Fabrizio Antolini, Samuele Cesarini, Francesco Giovanni Truglia

Lingua

English

DOI

10.36253/979-12-215-0106-3.19

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Informazioni bibliografiche

Titolo del libro

ASA 2022 Data-Driven Decision Making

Sottotitolo del libro

Book of short papers

Curatori

Enrico di Bella, Luigi Fabbris, Corrado Lagazio

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Editore

Firenze University Press, Genova University Press

DOI

10.36253/979-12-215-0106-3

eISBN (pdf)

979-12-215-0106-3

eISBN (xml)

979-12-215-0107-0

Collana

Proceedings e report

ISSN della collana

2704-601X

e-ISSN della collana

2704-5846

99

Download dei libri

274

Visualizzazioni

Salva la citazione

1.347

Libri in accesso aperto

in catalogo

2.262

Capitoli di Libri

3.790.127

Download dei libri

4.421

Autori

da 923 Istituzioni e centri di ricerca

di 65 Nazioni

65

scientific boards

da 348 Istituzioni e centri di ricerca

di 43 Nazioni

1.248

I referee

da 380 Istituzioni e centri di ricerca

di 38 Nazioni