Decarbonizing the construction sector has become an imperative global agenda, with electric machinery playing a pivotal role in realizing this objective. This research concentrates on devising an operational scheduling optimization method for electric ready-mixed concrete vehicles (ERVs) – a groundbreaking, eco-friendly intervention for the construction sector. We commence by outlining a systematic problem definition for the ERV operational process, considering the distinctive characteristics of electric vehicles and ready-mixed concrete (RMC) delivery tasks. The entire process is then conceptualized as a Markov decision problem (MDP), which enables sequential decision-making. We subsequently develop an enhanced model-based reinforcement learning technique, named parallel-masked-decaying Monte Carlo Tree Search (PMD-MCTS), for efficient resolution of the MDP. The entire system is authenticated via a real-world case study, and the PMD-MCTS's performance is juxtaposed against existing benchmarks. The results demonstrate the appropriateness of the proposed MDP formulation for tackling RMC delivery tasks. The PMD-MCTS algorithm and one of its ablation algorithms (PM-MCTS) have demonstrated superior performance compared to other benchmarks in either cost reduction or delay minimization, with PMD-MCTS requiring 30% less computation time than PM-MCTS
University of Hong KongThe Hong Kong University of Science and Technology, Hong Kong
University of Hong KongThe Hong Kong University of Science and Technology, Hong Kong - ORCID: 0000-0003-0362-8445
University of Hong KongThe Hong Kong University of Science and Technology, Hong Kong
University of Hong KongThe Hong Kong University of Science and Technology, Hong Kong - ORCID: 0000-0002-1722-2617
Titolo del capitolo
Scheduling Optimization of Electric Ready Mixed Concrete Vehicles Using an Improved Model-Based Reinforcement Learning
Autori
Zhengyi Chen, Changhao Song, Xiao Zhang, Jack C. P. Cheng
DOI
10.36253/979-12-215-0289-3.74
Opera sottoposta a peer review
Anno di pubblicazione
2023
Copyright
© 2023 Author(s)
Licenza d'uso
Licenza dei metadati
Titolo del libro
CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality
Sottotitolo del libro
Managing the Digital Transformation of Construction Industry
Curatori
Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi
Opera sottoposta a peer review
Anno di pubblicazione
2023
Copyright
© 2023 Author(s)
Licenza d'uso
Licenza dei metadati
Editore
Firenze University Press
DOI
10.36253/979-12-215-0289-3
eISBN (pdf)
979-12-215-0289-3
eISBN (xml)
979-12-215-0257-2
Collana
Proceedings e report
ISSN della collana
2704-601X
e-ISSN della collana
2704-5846