Contenuto in:
Capitolo

Longitudinal profile of a set of biomarkers in predicting Covid-19 mortality using joint models

  • Matteo Di Maso
  • Monica Ferraroni
  • Pasquale Ferrante
  • Serena Delbue
  • Federico Ambrogi

In survival analysis, time-varying covariates are endogenous when their measurements are directly related to the event status and incomplete information occur at random points during the follow-up. Consequently, the time-dependent Cox model leads to biased estimates. Joint models (JM) allow to correctly estimate these associations combining a survival and longitudinal sub-models by means of a shared parameter (i.e., random effects of the longitudinal sub-model are inserted in the survival one). This study aims at showing the use of JM to evaluate the association between a set of inflammatory biomarkers and Covid-19 mortality. During Covid-19 pandemic, physicians at Istituto Clinico di Città Studi in Milan collected biomarkers (endogenous time-varying covariates) to understand what might be used as prognostic factors for mortality. Furthermore, in the first epidemic outbreak, physicians did not have standard clinical protocols for management of Covid-19 disease and measurements of biomarkers were highly incomplete especially at the baseline. Between February and March 2020, a total of 403 COVID-19 patients were admitted. Baseline characteristics included sex and age, whereas biomarkers measurements, during hospital stay, included log-ferritin, log-lymphocytes, log-neutrophil granulocytes, log-C-reactive protein, glucose and LDH. A Bayesian approach using Markov chain Monte Carlo algorithm were used for fitting JM. Independent and non-informative priors for the fixed effects (age and sex) and for shared parameters were used. Hazard ratios (HR) from a (biased) time-dependent Cox and joint models for log-ferritin levels were 2.10 (1.67-2.64) and 1.73 (1.38-2.20), respectively. In multivariable JM, doubling of biomarker levels resulted in a significantly increase of mortality risk for log-neutrophil granulocytes, HR=1.78 (1.16-2.69); for log-C-reactive protein, HR=1.44 (1.13-1.83); and for LDH, HR=1.28 (1.09-1.49). Increasing of 100 mg/dl of glucose resulted in a HR=2.44 (1.28-4.26). Age, however, showed the strongest effect with mortality risk starting to rise from 60 years.

  • Keywords:
  • Endogenous time-varying covariates,
  • Time-dependent Cox model,
  • Joint models,
  • Inflammatory biomarkers,
  • Covid-19 mortality,
+ Mostra di più

Matteo Di Maso

University of Milan, Italy - ORCID: 0000-0002-6481-990X

Monica Ferraroni

University of Milan, Italy - ORCID: 0000-0002-4542-4996

Pasquale Ferrante

University of Milan, Italy

Serena Delbue

University of Milan, Italy - ORCID: 0000-0002-3199-9369

Federico Ambrogi

University of Milan, Italy - ORCID: 0000-0001-9358-011X

  1. Rizopoulos D. (2012). Joint Models for Longitudinal and Time-to-Event Data. With Application in R. Boca Raton: Chapman & Hall/CRC.
  2. Therneau T., Grambsch P. (2000). Modeling Survival Data: Extending the Cox Model. Springer-Verlag, New York (NY).
  3. van Houwelingen HC., Putter H. (2012). Dynamic Prediction in Clinical Survival Analysis. Boca Raton: Chapman & Hall/CRC.
  4. Rizopoulos D. (2016). The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data using MCMC. J Stat Softw. 72(7), pp. 1-45.
  5. Putter H. (2015). dynpred: Companion Package to "Dynamic Prediction in Clinical Survival Analysis". R package version 0.1.2. <https://CRAN.Rproject.org/package=dynpred>.
PDF
  • Anno di pubblicazione: 2021
  • Pagine: 191-196

XML
  • Anno di pubblicazione: 2021

Informazioni sul capitolo

Titolo del capitolo

Longitudinal profile of a set of biomarkers in predicting Covid-19 mortality using joint models

Autori

Matteo Di Maso, Monica Ferraroni, Pasquale Ferrante, Serena Delbue, Federico Ambrogi

Lingua

English

DOI

10.36253/978-88-5518-461-8.36

Opera sottoposta a peer review

Anno di pubblicazione

2021

Copyright

© 2021 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Informazioni bibliografiche

Titolo del libro

ASA 2021 Statistics and Information Systems for Policy Evaluation

Sottotitolo del libro

BOOK OF SHORT PAPERS of the on-site conference

Curatori

Bruno Bertaccini, Luigi Fabbris, Alessandra Petrucci

Opera sottoposta a peer review

Anno di pubblicazione

2021

Copyright

© 2021 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Editore

Firenze University Press

DOI

10.36253/978-88-5518-461-8

eISBN (pdf)

978-88-5518-461-8

eISBN (xml)

978-88-5518-462-5

Collana

Proceedings e report

ISSN della collana

2704-601X

e-ISSN della collana

2704-5846

333

Download dei libri

248

Visualizzazioni

Salva la citazione

1.383

Libri in accesso aperto

in catalogo

2.567

Capitoli di Libri

4.133.292

Download dei libri

4.947

Autori

da 1047 Istituzioni e centri di ricerca

di 66 Nazioni

69

scientific boards

da 368 Istituzioni e centri di ricerca

di 43 Nazioni

1.300

I referee

da 393 Istituzioni e centri di ricerca

di 38 Nazioni