Due to challenges in filling vacant positions and the heightened demands posed on existing staff, employers and project managers are progressively considering the recruitment of inexperienced individuals and seeking strategies to swiftly provide them with essential job-specific knowledge. The potential of industrial AR has been widely researched to support workers in overcoming skill-related knowledge and enhancing industrial processes. However, most studies focus on demonstrating technology usability across different processes and overcoming engineering hurdles on a case-by-case basis. There is no direct benefit analysis on how AR assists construction tasks at human motion level, and how to eliminate the ineffective motions and reduce the duration of effective motions. To fill this gap, this paper first establishes an AR-based near real-time object detection system of small tools and components involved in task processes for egocentric perception of workers in the construction industry. Later, the Standard Operating Procedure (SOP) for scaffolding assembly activities is deconstructed from a manual process into Therbligs-based elemental motions. Finally, this research conducted a comparative study of two prototypes across four dimensions of evaluation. As a step forward in this direction, this paper renews the connotations of Therbligs theory under industry 5.0 era, rethinks the AR-assisted construction task processes, and applies appropriate technologies enhancing the adaptability of AR technology for construction workers’ needs
University of Alberta, Canada
University of Alberta, Canada - ORCID: 0000-0003-1409-3562
University of Alberta, Canada - ORCID: 0000-0001-6802-033X
Titolo del capitolo
Integrating Real-Time Object Detection into an AR-Driven Task Assistance Prototype: An Approach Towards Reducing Specific Motions in Therbligs Theory
Autori
Xiang Yuan, Qipei Mei, Xinming Li
DOI
10.36253/979-12-215-0289-3.12
Opera sottoposta a peer review
Anno di pubblicazione
2023
Copyright
© 2023 Author(s)
Licenza d'uso
Licenza dei metadati
Titolo del libro
CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality
Sottotitolo del libro
Managing the Digital Transformation of Construction Industry
Curatori
Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi
Opera sottoposta a peer review
Anno di pubblicazione
2023
Copyright
© 2023 Author(s)
Licenza d'uso
Licenza dei metadati
Editore
Firenze University Press
DOI
10.36253/979-12-215-0289-3
eISBN (pdf)
979-12-215-0289-3
eISBN (xml)
979-12-215-0257-2
Collana
Proceedings e report
ISSN della collana
2704-601X
e-ISSN della collana
2704-5846