Contenuto in:
Capitolo

Image Segmentation Applied to Urban Surface and Aerial Constraints Analysis

  • Marco Lorenzo Trani
  • Federica Madaschi

The rapid progress of artificial intelligence (AI) has prompted the exploration of its potential applications in the construction industry, although at a slower rate. Since the starting point of a design is the analysis of the site’s constraints, the purpose of the ongoing research is the application of artificial intelligence in risk assessment for site areas. The primary objective of this research project is to develop an interactive map that employs AI to identify potential surface and aerial interferences. This map aims to support planners, engineers, and architects during the site context analysis phase by providing real-time visualization of obstacles. The interactive map allows users to explore and analyze identified obstacles, enabling cluster markers and filtering of features. The results obtained from applying this approach in Milan, Italy, demonstrate its functionality and usability, highlighting the tool's ability to provide valuable information in both localized and citywide scenarios. Potential improvements such as size assessment and advanced marker generation are also being examined to enhance the management of surface and air interferences. The goal is to enhance the tool's functionality, accuracy, and planning efficiency in construction projects

  • Keywords:
  • Image Segmentation,
  • Risk Assessment,
  • Construction Site,
  • Clustering Techniques,
+ Mostra di più

Marco Lorenzo Trani

Politecnico di Milano, Italy

Federica Madaschi

Politecnico di Milano, Italy

  1. Couto, João & José, Frederico & Santos, Barros & Rahnemay, Emilia & Kohlman Rabbani, Emilia. (2017). How Time Constraints Affect Safety Conditions at Construction Sites: Analysis of the Perception of Portuguese Construction Participants. EJGE. 2. 563.
  2. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. http://arxiv.org/abs/2010.11929
  3. Farkas, D., Hilton, B., Pick, J., Ramakrishna, H., Sarkar, A., & Shin, N. (2016). A Tutorial on Geographic Information Systems: A ten-year update. Communications of the Association for Information Systems, 38, 190–234. DOI: 10.17705/1cais.03809
  4. Liu, Y. (2021). Efficient Fully Convolutional Networks for Dense Prediction Tasks. [University of Adelaide]. https://hdl.handle.net/2440/134023
  5. Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/cvpr.2015.7298965
  6. Trani, M. L. (2012). Construction Site Design, Santarcangelo di Romagna (I), Maggioli Editore, 2012.
  7. Pan, Y., & Zhang, L. (2022). Integrating BIM and AI for Smart Construction Management: Current Status and Future Directions. Archives of Computational Methods in Engineering, 30(2), 1081–1110. DOI: 10.1007/s11831-022-09830-8
  8. Ranftl, R., Bochkovskiy, A., & Koltun, V. (2021). Vision Transformers for Dense Prediction. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). DOI: 10.1109/iccv48922.2021.01196
  9. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013). OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. http://arxiv.org/abs/1312.6229
PDF
  • Anno di pubblicazione: 2023
  • Pagine: 907-916

XML
  • Anno di pubblicazione: 2023

Informazioni sul capitolo

Titolo del capitolo

Image Segmentation Applied to Urban Surface and Aerial Constraints Analysis

Autori

Marco Lorenzo Trani, Federica Madaschi

DOI

10.36253/979-12-215-0289-3.90

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY-NC 4.0

Licenza dei metadati

CC0 1.0

Informazioni bibliografiche

Titolo del libro

CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Sottotitolo del libro

Managing the Digital Transformation of Construction Industry

Curatori

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY-NC 4.0

Licenza dei metadati

CC0 1.0

Editore

Firenze University Press

DOI

10.36253/979-12-215-0289-3

eISBN (pdf)

979-12-215-0289-3

eISBN (xml)

979-12-215-0257-2

Collana

Proceedings e report

ISSN della collana

2704-601X

e-ISSN della collana

2704-5846

115

Download dei libri

115

Visualizzazioni

Salva la citazione

1.383

Libri in accesso aperto

in catalogo

2.567

Capitoli di Libri

4.133.292

Download dei libri

4.947

Autori

da 1047 Istituzioni e centri di ricerca

di 66 Nazioni

69

scientific boards

da 368 Istituzioni e centri di ricerca

di 43 Nazioni

1.300

I referee

da 393 Istituzioni e centri di ricerca

di 38 Nazioni