Contenuto in:
Capitolo

Assessment of agricultural productivity change at country level: A stochastic frontier approach

  • Alessandro Magrini

In this paper, we estimate agricultural productivity change at country level based on the same data employed by the United States Department of Agriculture (USDA), the current reference data source, using a stochastic frontier model instead of the growth accounting method. The use of a stochastic frontier model is motivated by the opportunity to overcome the limitation of USDA estimates which rely on approximated and imputed input cost shares, and of the growth accounting method in general, which ignores technical inefficiency. We found that, in general, USDA estimates are higher in absolute value than ours but in substantial agreement, confirming the different theoretical foundations of the two methods and suggesting the empirical validity of both of them. Furthermore, our results show that the assumption of constant returns to scale made by many authors appears just a simplification and not a real property of the production processes of the various countries. This work has the value to provide, for the first time in the literature, a comparison between agricultural productivity changes estimated with different methodologies, and an additional data source that can be employed in a large variety of longitudinal economic analyses at country level.

  • Keywords:
  • agricultural TFP,
  • growth accounting,
  • Malmquist index,
  • technical efficiency,
  • translog production frontier,
+ Mostra di più

Alessandro Magrini

University of Florence, Italy - ORCID: 0000-0002-7278-5332

  1. Battese, G.E., Coelli, T.J. (1995). A model for technical inefficiency effects in a stochastic frontier production function for panel data Empirical Economics, 20: 325-332.
  2. Charnes, A., Cooper, W.W., Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6): 429-444.
  3. Caves, D.W., Christensen, L.R., Diewert, W.E. (1982). The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica, 50: 1393-1414.
  4. Coelli, T., Henningsen, A. (2020). frontier: stochastic frontier analysis. R package version 1.1-8. <https://CRAN.R-Project.org/package=frontier>.
  5. Fuglie, K.O. (2015). Accounting for growth in global agriculture. Bio-based and Applied Economics, 4(3): 221-254.
  6. Kryszak, L., Swierczynska, K., Staniszewski, J. (2021). Measuring total factor productivity in agriculture: A bibliometric review. International Journal of Emerging Markets, 16(5).
  7. Laureti, T. (2006). L’efficienza rispetto alla frontiera delle possibilit`a produttive: Modelli teorici ed analisi empiriche. Firenze University Press, Florence, IT.
  8. Magrini, A. (2021). A stochastic frontier model to assess agricultural eco-efficiency of European countries in 1990–2019. International Journal of Statistics and Probability, 10(4): 138-156.
  9. Orea, L. (2002). Parametric decomposition of a generalized Malmquist productivity index. Journal of Productivity Analysis, 18: 5-22.
  10. Schmidt, P., Sickles, R.C. (1984). Production frontiers and panel data. Journal of Business & Economic Statistics, 2(4): 299-326.
  11. United Nations (2020). World economic situation and prospects (WESP 2020). Department of Economic and Social Affairs, United Nations. <https://www.un.org/development/desa/publications/wesp-2020.html>.
  12. USDA (2019). International agricultural productivity. Economic Research Service (ERS), United States Department of Agriculture (USDA). <https://www.ers.usda.gov/data-products/international-agricultural-productivity/>.
PDF
  • Anno di pubblicazione: 2021
  • Pagine: 197-202

XML
  • Anno di pubblicazione: 2021

Informazioni sul capitolo

Titolo del capitolo

Assessment of agricultural productivity change at country level: A stochastic frontier approach

Autori

Alessandro Magrini

Lingua

English

DOI

10.36253/978-88-5518-461-8.37

Opera sottoposta a peer review

Anno di pubblicazione

2021

Copyright

© 2021 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Informazioni bibliografiche

Titolo del libro

ASA 2021 Statistics and Information Systems for Policy Evaluation

Sottotitolo del libro

BOOK OF SHORT PAPERS of the on-site conference

Curatori

Bruno Bertaccini, Luigi Fabbris, Alessandra Petrucci

Opera sottoposta a peer review

Anno di pubblicazione

2021

Copyright

© 2021 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Editore

Firenze University Press

DOI

10.36253/978-88-5518-461-8

eISBN (pdf)

978-88-5518-461-8

eISBN (xml)

978-88-5518-462-5

Collana

Proceedings e report

ISSN della collana

2704-601X

e-ISSN della collana

2704-5846

202

Download dei libri

287

Visualizzazioni

Salva la citazione

1.383

Libri in accesso aperto

in catalogo

2.567

Capitoli di Libri

4.133.292

Download dei libri

4.947

Autori

da 1047 Istituzioni e centri di ricerca

di 66 Nazioni

69

scientific boards

da 368 Istituzioni e centri di ricerca

di 43 Nazioni

1.300

I referee

da 393 Istituzioni e centri di ricerca

di 38 Nazioni