Contenuto in:
Capitolo

A Natural Language Processing approach to measure expertise in the Delphi-based scenarios

  • Yuri Calleo
  • Simone Di Zio
  • Francesco Pilla

The Delphi-based scenarios (DBS) development implies the assumption of different choices, through the gathering of information and the assessment of alternative resolutions (Panpatte and Takale, 2019). During the last decades, the spread of environmental hazards has increased quickly, much to request different responses in order to develop a sustainable future for humanity planning the present (McMichael and Lindgren, 2011). Since the DBS is a creative process (Nowack et al., 2011), different figures are selected to make choices, including academics, stakeholders and citizens. However, one of the main challenges remains the measurement of expertise, in fact, during the process, the experts should be assessed based on their competences in order to avoid any conflict in the final results and, eventually, weigh their answers. In recent years, some contributions adopted the self-assessments for the experts’ evaluation (Sossa et al., 2019), but many issues still remain (such as strong subjectivity and cognitive biases which produce over or underestimation). We develop a new method to estimate the expertise by using Natural Language Processing to acquire information, extracting the contributions of experts in each topic. First, starting from a draft list of selected experts, we identify the category of reference (e.g., academia, industry, local authority, citizens etc.). We build a data repository with the personal pages (URLs) of each expert to then use Python to extract from the URLs, the number of contributions related to a keyword, different for each category (e.g., publications for academics, reports and projects for stakeholders etc.). Finally, we proceed adopting a coefficient of production with a weighted sum of the results. To practically demonstrate our approach, we applied this method to a cohort of known experts, part of the “Smart control of the climate resilience” (SCORE) H2020 European project to estimate their expertise in specific areas.

  • Keywords:
  • future scenarios,
  • Delphi,
  • expertise assessment,
+ Mostra di più

Yuri Calleo

University College Dublin, Italy - ORCID: 0000-0002-0190-6061

Simone Di Zio

University of Chieti-Pescara G. D'Annunzio, Italy - ORCID: 0000-0002-9139-1451

Francesco Pilla

University College Dublin, Ireland - ORCID: 0000-0002-1535-1239

  1. Barroso O. J. M., & Cabero A. J. (2013), La utilización del juicio de experto para la evaluación de TIC: el coeficiente de competencia experta. Bordón. Revista de Pedagogía, 65 (2), pp. 25-38. DOI: 10.13042/brp.2013.65202.
  2. Bishop P., Hines A., Collins T. (2007), The current state of scenario development: An overview of techniques, Foresight, 9(1), pp. 5–25.
  3. Bonaccorsi A., Apreda R., Fantoni G. (2020), Expert biases in technology foresight. Why they are a problem and how to mitigate them, Technological Forecasting & Social Change, 151, pp. 1–17.
  4. Dalkey N., & Helmer O. (1963), An experimental application of the Delphi method to the use of experts. Management science, 9(3), pp. 458-467. DOI: 10.1287/mnsc.9.3.458.
  5. Di Zio S., Bolzan M., Marozzi M. (2021), Classification of Delphi outputs through robust ranking and fuzzy clustering for Delphi-based scenarios, Technological Forecasting & Social Change, 173, pp. 1211400040. DOI: 10.1016/j.techfore.2021.121140
  6. Di Zio S., Rosas, J. D. C., & Lamelza, L. (2017), Real Time Spatial Delphi: Fast convergence of experts' opinions on the territory. Technological Forecasting and Social Change, 115, pp. 143-154. DOI: 10.1016/j.techfore.2016.09.029.
  7. Gary J. E., & Heiko A. (2015), The future of foresight professionals: Results from a global Delphi study. Futures, 71, pp. 132-145.
  8. Gordon T. J. (1994). The delphi method. Futures research methodology, 2(3), pp. 1-30.
  9. Gorn L., Kleemann J., & Fürst, C. (2018), Improving the Matrix-Assessment of Ecosystem Services Provision—The Case of Regional Land Use Planning under Climate Change in the Region of Halle, Germany. Land, 7(2), pp. 76. DOI: 10.3390/land7020076.
  10. Kosow H., Gaßner R. (2008), Methods of future and scenario analysis: overview, assessment, and selection criteria, Bonn, Deutsches Institut für Entwicklungspolitik.
  11. Mullen P. (2003), Delphi: myths and reality, Journal of Health Organisation and Management, 17 (1), pp. 37–52.
  12. Nair V. G. (2014), Getting started with beautiful soup. Packt Publishing Ltd.
  13. Nowack M., Endrikat J., & Guenther E. (2011), Review of Delphi-based scenario studies: Quality and design considerations. Technological Forecasting and Social Change, 78(9), pp. 1603-1615.
  14. Rodríguez P. O. S. (1995), Land use conflicts and planning strategies in urban fringes: a case study of western Caracas, Venezuela.
  15. Rowe G., & Wright G. (1999), The Delphi technique as a forecasting tool: issues and analysis. International journal of forecasting, 15(4), pp. 353-375. DOI: 10.1016/S0169-2070(99)00018-7.
  16. Saaty T.L. (1980), The Analytic Hierarchy Process. McGraw-Hill, New York.
  17. Sossa J. W. Z., Halal, W., & Zarta, R. H. (2019), Delphi method: analysis of rounds, stakeholder and statistical indicators. Foresight. DOI: 10.1108/FS-11-2018-0095.
  18. Varho V., Rikkonen P., & Rasi, S. (2016), Futures of distributed small-scale renewable energy in Finland—A Delphi study of the opportunities and obstacles up to 2025. Technological Forecasting and Social Change, 104, pp. 30-37.
PDF
  • Anno di pubblicazione: 2023
  • Pagine: 163-168

XML
  • Anno di pubblicazione: 2023

Informazioni sul capitolo

Titolo del capitolo

A Natural Language Processing approach to measure expertise in the Delphi-based scenarios

Autori

Yuri Calleo, Simone Di Zio, Francesco Pilla

Lingua

English

DOI

10.36253/979-12-215-0106-3.29

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Informazioni bibliografiche

Titolo del libro

ASA 2022 Data-Driven Decision Making

Sottotitolo del libro

Book of short papers

Curatori

Enrico di Bella, Luigi Fabbris, Corrado Lagazio

Opera sottoposta a peer review

Anno di pubblicazione

2023

Copyright

© 2023 Author(s)

Licenza d'uso

CC BY 4.0

Licenza dei metadati

CC0 1.0

Editore

Firenze University Press, Genova University Press

DOI

10.36253/979-12-215-0106-3

eISBN (pdf)

979-12-215-0106-3

eISBN (xml)

979-12-215-0107-0

Collana

Proceedings e report

ISSN della collana

2704-601X

e-ISSN della collana

2704-5846

251

Download dei libri

643

Visualizzazioni

Salva la citazione

1.412

Libri in accesso aperto

in catalogo

2.691

Capitoli di Libri

4.559.482

Download dei libri

5.066

Autori

da 1079 Istituzioni e centri di ricerca

di 66 Nazioni

72

scientific boards

da 381 Istituzioni e centri di ricerca

di 43 Nazioni

1.312

I referee

da 402 Istituzioni e centri di ricerca

di 38 Nazioni